Analisis Penerapan Data Mining Terhadap Kasus Positif Covid-19 Menggunakan Metode K-Means Clustering
DOI:
https://doi.org/10.47065/jieee.v3i2.1760Keywords:
COVID-19; Clustering; Data Mining; K-MeansAbstract
This study has problems such as the absence of the use of the K-means clustering algorithm for data on positive COVID-19 cases in the Indonesian province. The purpose of this study is to apply the K-means clustering method in finding the closest distance to produce the lowest and highest clusters of data on positive COVID-19 cases in the Indonesian province. K-means is one of the algorithms in the non-hierarchical Clustering technique that tries to partition the existing data in the form of one or more clusters. The results obtained from the k-means clustering method produced 2 clusters, namely the lowest cluster C1 = 30 items while the highest cluster C2 = 4 items. This research can be used as a reference and can be further developed with other clustering methods or algorithms such as k-medoid in order to get a comparison of results and steps to use algorithms related to clustering.
Downloads
References
S. N. Alaziz, A. A. Alshowiman, B. Albayati, A. al A. H. El-Bagoury, and W. Shafik, “Clustering of COVID-19 Multi-Time Series-Based K-Means and PCA With Forecasting,” Int. J. Data Warehous. Min., vol. 19, no. 3, 2023, doi: 10.4018/IJDWM.317374.
D. T. Utari, “Analisis Karakteristik Wilayah Transmisi Covid-19 dengan Menggunakan Metode K-Means Clustering,” J. Media Tek. dan Sist. Ind., vol. 5, no. 1, p. 25, 2021, doi: 10.35194/jmtsi.v5i1.1220.
I. S. Mangku Negara, P. Purwono, and I. A. Ashari, “Analisa Cluster Data Transaksi Penjualan Minimarket Selama Pandemi Covid-19 dengan Algoritma K-means,” JOINTECS (Journal Inf. Technol. Comput. Sci., vol. 6, no. 3, p. 153, 2021, doi: 10.31328/jointecs.v6i3.2693.
U. R. Gurning and M. Mustakim, “Penerapan Algoritma K-Means dan K-Medoid untuk Pengelompokkan Data Pasien Covid-19,” Build. Informatics, Technol. Sci., vol. 3, no. 1, pp. 48–55, 2021, doi: 10.47065/bits.v3i1.1003.
S. K. Sunori, P. B. Negi, S. Maurya, P. Juneja, A. Rana, and Bhawana, “K-Means Clustering of Ambient Air Quality Data of Uttarakhand, India during Lockdown Period of Covid-19 Pandemic,” Proc. 6th Int. Conf. Inven. Comput. Technol. ICICT 2021, pp. 1254–1259, 2021, doi: 10.1109/ICICT50816.2021.9358627.
D. D. Darmansah, “Analisis Penyebaran Penularan Virus Covid-19 di Provinsi Jawa Barat Menggunakan Algoritma K-Means Clustering,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 8, no. 3, pp. 1188–1199, 2021, doi: 10.35957/jatisi.v8i3.1034.
A. L. R. Putri and N. Dwidayati, “Analisa Perbandingan K-Means dan Fuzzy C-Menas dalam Pengelompokan Daerah Penyebaran Covid-19 Indonesia,” UNNES J. Math., vol. 10, no. 2, pp. 50–55, 2021, [Online]. Available: http://journal.unnes.ac.id/sju/index.php/ujm.
H. Gunawan and V. Purwayoga, “Data Mining Menggunakan Algoritma K-Means Clustering Untuk Mengetahui Potensi Penyebaran Virus Corona Di Kota Cirebon,” J. Sisfokom (Sistem Inf. dan Komputer), vol. 11, no. 1, pp. 1–8, 2022, doi: 10.32736/sisfokom.v11i1.1316.
N. G. Ali, S. D. Abed, F. A. J. Shaban, K. Tongkachok, S. Ray, and R. A. Jaleel, “Hybrid of K-Means and partitioning around medoids for predicting COVID-19 cases: Iraq case study,” Period. Eng. Nat. Sci., vol. 9, no. 4, pp. 569–579, 2021, doi: 10.21533/pen.v9i4.2382.
V. Chandu, “Identification of spatial variations in COVID-19 epidemiological data using K-Means clustering algorithm: a global perspective,” medRxiv, p. 2020.06.03.20121194, 2020, [Online]. Available: http://medrxiv.org/content/early/2020/06/05/2020.06.03.20121194.abstract.
W. Utomo, “The comparison of k-means and k-medoids algorithms for clustering the spread of the covid-19 outbreak in Indonesia,” Ilk. J. Ilm., vol. 13, no. 1, pp. 31–35, 2021, doi: 10.33096/ilkom.v13i1.763.31-35.
Darmansah and N. W. Wardani, “Analisis Pesebaran Penularan Virus Corona di Provinsi Jawa Tengah Menggunakan Metode K-Means Clustering,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 8, no. 1, pp. 105–117, 2021, doi: 10.35957/jatisi.v8i1.590.
A. Mahmudan, “Clustering of District or City in Central Java Based COVID-19 Case Using K-Means Clustering,” J. Mat. Stat. dan Komputasi, vol. 17, no. 1, pp. 1–13, 2020, doi: 10.20956/jmsk.v17i1.10727.
M. Zubair, M. Asif Iqbal, A. Shil, E. Haque, M. Moshiul Hoque, and I. H. Sarker, “An Efficient K-Means Clustering Algorithm for Analysing COVID-19,” Adv. Intell. Syst. Comput., vol. 1375 AIST, pp. 422–432, 2021, doi: 10.1007/978-3-030-73050-5_43.
N. Mirantika, “Penerapan Algoritma K-Means Clustering Untuk Pengelompokan Penyebaran Covid-19 di Provinsi Jawa Barat,” Nuansa Inform., vol. 15, no. 2, pp. 92–98, 2021, doi: 10.25134/nuansa.v15i2.4321.
R. Adha, N. Nurhaliza, U. Sholeha, and M. Mustakim, “Perbandingan Algoritma DBSCAN dan K-Means Clustering untuk Pengelompokan Kasus Covid-19 di Dunia,” SITEKIN J. Sains, Teknol. dan Ind., vol. 18, no. 2, pp. 206–211, 2021.
F. Virgantari and Y. E. Faridhan, “K-Means Clustering of COVID-19 Cases i n Indonesia ’ s Provinces,” 2020.
J. Hutagalung, N. L. W. S. R. Ginantra, G. W. Bhawika, W. G. S. Parwita, A. Wanto, and P. D. Panjaitan, “COVID-19 Cases and Deaths in Southeast Asia Clustering using K-Means Algorithm,” J. Phys. Conf. Ser., vol. 1783, no. 1, 2021, doi: 10.1088/1742-6596/1783/1/012027.
T. Hardiani, “Analisis Clustering Kasus Covid 19 di Indonesia Menggunakan Algoritma K-Means,” J. Nas. Pendidik. Tek. Inform., vol. 11, no. 2, pp. 156–165, 2022, doi: 10.23887/janapati.v11i2.45376.
Z. Nabila, A. Rahman Isnain, and Z. Abidin, “Analisis Data Mining Untuk Clustering Kasus Covid-19 Di Provinsi Lampung Dengan Algoritma K-Means,” J. Teknol. dan Sist. Inf., vol. 2, no. 2, p. 100, 2021, [Online]. Available: http://jim.teknokrat.ac.id/index.php/JTSI.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Analisis Penerapan Data Mining Terhadap Kasus Positif Covid-19 Menggunakan Metode K-Means Clustering
ARTICLE HISTORY
Issue
Section
Copyright (c) 2023 Ridhan Azhari, Dedy Hartama, Muhammad Ridwan Lubis, Della Fatricia Nasution, Agus Perdana Windarto

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).


