Analisis Penerapan Data Mining Terhadap Kasus Positif Covid-19 Menggunakan Metode K-Means Clustering


Authors

  • Ridhan Azhari STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
  • Dedy Hartama STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
  • Muhammad Ridwan Lubis STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
  • Della Fatricia Nasution STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
  • Agus Perdana Windarto STIKOM Tunas Bangsa, Pematangsiantar, Indonesia

DOI:

https://doi.org/10.47065/jieee.v3i2.1760

Keywords:

COVID-19; Clustering; Data Mining; K-Means

Abstract

This study has problems such as the absence of the use of the K-means clustering algorithm for data on positive COVID-19 cases in the Indonesian province. The purpose of this study is to apply the K-means clustering method in finding the closest distance to produce the lowest and highest clusters of data on positive COVID-19 cases in the Indonesian province. K-means is one of the algorithms in the non-hierarchical Clustering technique that tries to partition the existing data in the form of one or more clusters. The results obtained from the k-means clustering method produced 2 clusters, namely the lowest cluster C1 = 30 items while the highest cluster C2 = 4 items. This research can be used as a reference and can be further developed with other clustering methods or algorithms such as k-medoid in order to get a comparison of results and steps to use algorithms related to clustering.

Downloads

Download data is not yet available.

References

S. N. Alaziz, A. A. Alshowiman, B. Albayati, A. al A. H. El-Bagoury, and W. Shafik, “Clustering of COVID-19 Multi-Time Series-Based K-Means and PCA With Forecasting,” Int. J. Data Warehous. Min., vol. 19, no. 3, 2023, doi: 10.4018/IJDWM.317374.

D. T. Utari, “Analisis Karakteristik Wilayah Transmisi Covid-19 dengan Menggunakan Metode K-Means Clustering,” J. Media Tek. dan Sist. Ind., vol. 5, no. 1, p. 25, 2021, doi: 10.35194/jmtsi.v5i1.1220.

I. S. Mangku Negara, P. Purwono, and I. A. Ashari, “Analisa Cluster Data Transaksi Penjualan Minimarket Selama Pandemi Covid-19 dengan Algoritma K-means,” JOINTECS (Journal Inf. Technol. Comput. Sci., vol. 6, no. 3, p. 153, 2021, doi: 10.31328/jointecs.v6i3.2693.

U. R. Gurning and M. Mustakim, “Penerapan Algoritma K-Means dan K-Medoid untuk Pengelompokkan Data Pasien Covid-19,” Build. Informatics, Technol. Sci., vol. 3, no. 1, pp. 48–55, 2021, doi: 10.47065/bits.v3i1.1003.

S. K. Sunori, P. B. Negi, S. Maurya, P. Juneja, A. Rana, and Bhawana, “K-Means Clustering of Ambient Air Quality Data of Uttarakhand, India during Lockdown Period of Covid-19 Pandemic,” Proc. 6th Int. Conf. Inven. Comput. Technol. ICICT 2021, pp. 1254–1259, 2021, doi: 10.1109/ICICT50816.2021.9358627.

D. D. Darmansah, “Analisis Penyebaran Penularan Virus Covid-19 di Provinsi Jawa Barat Menggunakan Algoritma K-Means Clustering,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 8, no. 3, pp. 1188–1199, 2021, doi: 10.35957/jatisi.v8i3.1034.

A. L. R. Putri and N. Dwidayati, “Analisa Perbandingan K-Means dan Fuzzy C-Menas dalam Pengelompokan Daerah Penyebaran Covid-19 Indonesia,” UNNES J. Math., vol. 10, no. 2, pp. 50–55, 2021, [Online]. Available: http://journal.unnes.ac.id/sju/index.php/ujm.

H. Gunawan and V. Purwayoga, “Data Mining Menggunakan Algoritma K-Means Clustering Untuk Mengetahui Potensi Penyebaran Virus Corona Di Kota Cirebon,” J. Sisfokom (Sistem Inf. dan Komputer), vol. 11, no. 1, pp. 1–8, 2022, doi: 10.32736/sisfokom.v11i1.1316.

N. G. Ali, S. D. Abed, F. A. J. Shaban, K. Tongkachok, S. Ray, and R. A. Jaleel, “Hybrid of K-Means and partitioning around medoids for predicting COVID-19 cases: Iraq case study,” Period. Eng. Nat. Sci., vol. 9, no. 4, pp. 569–579, 2021, doi: 10.21533/pen.v9i4.2382.

V. Chandu, “Identification of spatial variations in COVID-19 epidemiological data using K-Means clustering algorithm: a global perspective,” medRxiv, p. 2020.06.03.20121194, 2020, [Online]. Available: http://medrxiv.org/content/early/2020/06/05/2020.06.03.20121194.abstract.

W. Utomo, “The comparison of k-means and k-medoids algorithms for clustering the spread of the covid-19 outbreak in Indonesia,” Ilk. J. Ilm., vol. 13, no. 1, pp. 31–35, 2021, doi: 10.33096/ilkom.v13i1.763.31-35.

Darmansah and N. W. Wardani, “Analisis Pesebaran Penularan Virus Corona di Provinsi Jawa Tengah Menggunakan Metode K-Means Clustering,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 8, no. 1, pp. 105–117, 2021, doi: 10.35957/jatisi.v8i1.590.

A. Mahmudan, “Clustering of District or City in Central Java Based COVID-19 Case Using K-Means Clustering,” J. Mat. Stat. dan Komputasi, vol. 17, no. 1, pp. 1–13, 2020, doi: 10.20956/jmsk.v17i1.10727.

M. Zubair, M. Asif Iqbal, A. Shil, E. Haque, M. Moshiul Hoque, and I. H. Sarker, “An Efficient K-Means Clustering Algorithm for Analysing COVID-19,” Adv. Intell. Syst. Comput., vol. 1375 AIST, pp. 422–432, 2021, doi: 10.1007/978-3-030-73050-5_43.

N. Mirantika, “Penerapan Algoritma K-Means Clustering Untuk Pengelompokan Penyebaran Covid-19 di Provinsi Jawa Barat,” Nuansa Inform., vol. 15, no. 2, pp. 92–98, 2021, doi: 10.25134/nuansa.v15i2.4321.

R. Adha, N. Nurhaliza, U. Sholeha, and M. Mustakim, “Perbandingan Algoritma DBSCAN dan K-Means Clustering untuk Pengelompokan Kasus Covid-19 di Dunia,” SITEKIN J. Sains, Teknol. dan Ind., vol. 18, no. 2, pp. 206–211, 2021.

F. Virgantari and Y. E. Faridhan, “K-Means Clustering of COVID-19 Cases i n Indonesia ’ s Provinces,” 2020.

J. Hutagalung, N. L. W. S. R. Ginantra, G. W. Bhawika, W. G. S. Parwita, A. Wanto, and P. D. Panjaitan, “COVID-19 Cases and Deaths in Southeast Asia Clustering using K-Means Algorithm,” J. Phys. Conf. Ser., vol. 1783, no. 1, 2021, doi: 10.1088/1742-6596/1783/1/012027.

T. Hardiani, “Analisis Clustering Kasus Covid 19 di Indonesia Menggunakan Algoritma K-Means,” J. Nas. Pendidik. Tek. Inform., vol. 11, no. 2, pp. 156–165, 2022, doi: 10.23887/janapati.v11i2.45376.

Z. Nabila, A. Rahman Isnain, and Z. Abidin, “Analisis Data Mining Untuk Clustering Kasus Covid-19 Di Provinsi Lampung Dengan Algoritma K-Means,” J. Teknol. dan Sist. Inf., vol. 2, no. 2, p. 100, 2021, [Online]. Available: http://jim.teknokrat.ac.id/index.php/JTSI.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Analisis Penerapan Data Mining Terhadap Kasus Positif Covid-19 Menggunakan Metode K-Means Clustering

Dimensions Badge

ARTICLE HISTORY


Published: 2023-12-30
Abstract View: 401 times
PDF Download: 351 times