Analisis Penerapan Jaringan Saraf Tiruan Backpropagation dalam Memprediksi Penjualan Produk Es Kristal
DOI:
https://doi.org/10.47065/jieee.v3i1.1610Keywords:
Artificial Neural Network; Backpropagation; Sales Prediction; Ice CrystalAbstract
Ice Crystal Inti’s factory is the only producer of the ice crystals in Pematangsiantar. Untill now, the factory uses a simple system for recording sales, which creates difficulties in predicting sales. Preeiction calculation manually has a fairly high level of risk and hampers the sales performance process. For this reason, the factory need a system that can calculate sales predicting for ice crystal products and reduce that risk of lost. This study aims to make predictions using Artificial Intelligence with the Backpropagation algirithm. The data used is sourced from the Ice Crystal Inti’s Factory in Pematangsiantar for the 2020-2021 period. The process is done by dividing the training data and testing data to obtain the best architectural model. The training architecture model used to predict sales of ice crystal products is : 11-2-1; 11-25-1; 11-50-1; 11-50-75-1; dan 11-100-1. From a series of trials, the best pattern of the backpropagation architecture is 11-2-1 with a Means Square Error of 0.0009997950, an epoch of 414557, and an accuracy of 75% which will then be used to make predictions.
Downloads
References
Y. D. Safrida and T. Thaharah, “Identifikasi Bakteri Escherichia Coli Pada Es Kristal Di Rumah Makan Kecamatan Baiturrahman - Banda Aceh,” J. Serambi Eng., vol. 5, no. 3, pp. 1137–1145, 2020.
H. Danjaya, H. Okprana, and B. E. Danamik, “Implementasi Jaringan Saraf Tiruan Dalam Prediksi Penjualan Kue pada,” vol. 2, no. 5, pp. 225–233, 2022.
A. Dzulfikar, N. Ramsari, S. Sutjiningtyas, and P. Per, “IMPLEMENTASI PERAMALAN PENJUALAN PRODUK DI PT . PRIMA PER TRADEA UTAMA MENGGUNAKAN METODE ARTIFICIAL NEURAL NETWORK,” vol. XI, no. 2, 2021.
K. F. Irnanda, A. P. Windarto, and I. S. Damanik, “Optimasi Particle Swarm Optimization Pada Peningkatan Prediksi dengan Metode Backpropagation Menggunakan Software RapidMiner,” J. Ris. Komput., vol. 9, no. 1, pp. 122–130, 2022.
Agus Perdana Windarto, “Implementasi Jst Dalam Menentukan Kelayakan Nasabah Pinjaman Kur Pada Bank Mandiri Mikro Serbelawan Dengan Metode Backpropogation,” J-SAKTI (Jurnal Sains Komput. dan Inform., vol. 1, no. 1, pp. 12–23, 2017.
H. U. Sari, A. P. Windarto, and I. S. Damanik, “Analisis Jaringan Saraf Tiruan dengan Backpropagation pada korelasi Matakuliah Pratikum Terhadap Tugas Akhir,” vol. 9, no. 1, pp. 115–121, 2022.
N. Norhikmah and R. Rumini, “Klasifikasi Peminjaman Buku Menggunakan Neural Network Backpropagation,” Sistemasi, vol. 9, no. 1, p. 1, 2020.
S. H. Putri, Y. Yuhandri, and G. W. Nurcahyo, “Prediksi Pencapaian Target Peserta Keluarga Berencana Pasca Persalinan menggunakan Algoritma Backpropagation,” J. Sistim Inf. dan Teknol., vol. 3, pp. 176–182, 2021.
D. A. Putri, B. Hananto, S. Afrizal, and A. B. Pangaribuan, “Prediksi Program Studi Berdasarkan Nilai Siswa Dengan Algoritma Backpropagation (Studi Kasus Sman 6 Depok Jurusan Ips),” Inform. J. Ilmu Komput., vol. 15, no. 2, p. 69, 2020.
M. D. Wuryandari and I. Afrianto, “Perbandingan Metode Jaringan Syaraf Tiruan Backpropagation Dan Learning Vector Quantization Pada Pengenalan Wajah,” Komputa, vol. 1, no. 1, pp. 45–51, 2012.
R. M. Firzatullah, “Menggunakan Sistem Pendukung Keputusan Penentuan Uang Kuliah Tunggal Universitas XYZ Menggunakan Algoritma Backpropagation,” 2021.
A. P. Windarto, M. R. Lubis, and S. Solikhun, “Implementasi JST pada Prediksi Total Laba Rugi Komprehensif Bank Umum dan Konvensional dengan Backpropagation,” J. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 4, p. 411, 2018.
F. Jefansa, “Penerapan Jaringan Syaraf Tiruan dalam Meramalkan Produksi Kopi Berdasarkan Provinsi,” vol. 7, no. 1, pp. 1–7, 2022.
N. P. Sakinah, I. Cholissodin, and A. W. Widodo, “Prediksi Jumlah Permintaan Koran Menggunakan Metode Jaringan Syaraf Tiruan Backpropagation,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 7, pp. 2612–2618, 2018.
S. Alfarisi, “Sistem Prediksi Penjualan Gamis Toko QITAZ Menggunakan Metode Single Exponential Smoothing,” JABE (Journal Appl. Bus. Econ., vol. 4, no. 1, p. 80, 2017.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Analisis Penerapan Jaringan Saraf Tiruan Backpropagation dalam Memprediksi Penjualan Produk Es Kristal
ARTICLE HISTORY
Issue
Section
Copyright (c) 2023 Dila Dwi Anjani, Cindy Prakasiwi, Agus Perdana Windarto

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).


