Model Arsitektur Backpropagation Dalam Meramalkan Jumlah Tindak Pidana Menurut Kepolisian Daerah Sumatera Utara
DOI:
https://doi.org/10.47065/jieee.v3i1.1611Keywords:
Crime; Backpropagation; Forecasting; ArchitectureAbstract
A criminal act is a violation that can involve communities and is related to the law. The purpose of this study is to create the best architectural model using the backpropagation method where the best model can be used to predict the number of criminal acts according to the regional police in North Sumatra. The dataset used is sourced from the Central Statistics Agency of North Sumatra on the number of criminal acts in 2001-2020. The method used is the backpropagation method. The analysis process uses the help of Matlab 6.1 software. From the trials conducted using several architectural models 9-4-1, 9-8-1, 9-12-1, 9-16-1, and 9-20-1, the best architectural model is the 9-8 model. -1 with 90% correctness accuracy and MSE 0.0009992573.
Downloads
References
A. Revi, “Peramalan Jumlah Tindak Pidana Menurut Kepolisian Daerah Dengan Algoritma Backpropagation,” Semin. Nas. Sains Teknol. Inf., pp. 246–250, 2019.
H. T. B. Tambunan, D. Hartama, and I. Gunawan, “Implementasi Jaringan Syaraf Tiruan ( JST ) Untuk Memprediksi Jumlah Penjualan Gas 3Kg Menggunakan Metode Backpropagation,” Tin Terap. Inform. Nusant., vol. 1, no. 9, pp. 479–488, 2021.
G. Guntoro, L. Costaner, and L. Lisnawita, “Prediksi Jumlah Kendaraan di Provinsi Riau Menggunakan Metode Backpropagation,” Inform. Mulawarman J. Ilm. Ilmu Komput., vol. 14, no. 1, p. 50, 2019.
D. R. Wibawanty and P. P. Simanjuntak, “Prediksi Awal Musim Hujan Menggunakan Metode Jaringan Syaraf Tiruan Backpropagation,” Prism. Fis., vol. 9, no. 2, pp. 96–103, 2021.
Agus Perdana Windarto, “Implementasi Jst Dalam Menentukan Kelayakan Nasabah Pinjaman Kur Pada Bank Mandiri Mikro Serbelawan Dengan Metode Backpropogation,” J-SAKTI (Jurnal Sains Komput. dan Inform., vol. 1, no. 1, pp. 12–23, 2017.
A. Revi, S. Solikhun, and M. Safii, “Jaringan Syaraf Tiruan Dalam Memprediksi Jumlah Produksi Daging Sapi Berdasarkan Provinsi,” KOMIK (Konferensi Nas. Teknol. Inf. dan Komputer), vol. 2, no. 1, pp. 297–304, 2018.
Bagus Supranda, S Solikhun, and Zulia Almaida Siregar, “Penerapan Jaringan Syaraf Tiruan Backpropagation Dalam Memprediksi Jumlah Pertumbuhan Kendaraan Di Provinsi Sumatera Utara,” Resolusi Rekayasa Tek. Inform. dan Inf., vol. 2, no. 4, pp. 152–160, 2022.
A. P. Windarto, M. R. Lubis, and Solikhun, “Model Arsitektur Neural Network Dengan Backpropogation Pada Prediksi Total Laba,” Kumpul. J. Ilmu Komput., vol. 05, no. 02, pp. 147–158, 2018.
S. W. Stmik and K. Binjai, “Jaringan Syaraf Tiruan Memprediksi Kendaraan Masuk Pada Pengujian Kir Menggunakan Metode Backpropagation (Studi Kasus?: Dinas Perhubungan Kota Binjai),” 2021.
O. Barus and C. Wijaya, “Implementasi Metode Neural Network Backpropagation Dalam Prediksi Indeks Harga Saham Gabungan (Ihsg),” Seminastika, vol. 3, no. 1, pp. 79–85, 2021.
M. P. Sianipar, Sumarno, and H. S. Tambunan, “Implementasi Jaringan Syaraf Tiruan Backpropagation Untuk Memprediksi Jumlah Pemasangan Instalasi Air Pada PDAM Tirtauli Pematangsiantar,” TIN Terap. Inform. Nusant., vol. 1, no. 9, pp. 489–498, 2021.
H. Danjaya, H. Okprana, and B. E. Danamik, “Implementasi Jaringan Saraf Tiruan Dalam Prediksi Penjualan Kue pada,” vol. 2, no. 5, pp. 225–233, 2022.
Z. Amarta and J. D. Ma’rifah, “Peramalan Penjualan Produk Furniture Dengan Metode Backpropagation Neural Network,” J. Ilm. Tek. Ind., vol. 9, no. 1, p. 29, 2021.
P. Jumlah et al., “Peramalan Jumlah Kunjungan Wisatawan Mancanegara Ke Bali dengan Jaringan Saraf Tiruan Backpropagation,” J. Sains Komput. Inform. (J-SAKTI, vol. 6, no. 1, pp. 507–517, 2022.
I. R. Supriyanto, Sunardi, “Penerapan JST Backpropagation untuk Prediksi Siswa Penerima Bantuan,” J. Media Inform. Budidarma, vol. 6, no. 338, p. 8368, 2022.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Model Arsitektur Backpropagation Dalam Meramalkan Jumlah Tindak Pidana Menurut Kepolisian Daerah Sumatera Utara
ARTICLE HISTORY
Issue
Section
Copyright (c) 2023 Liza Annisa, Alvina Isnaini, Agus Perdana Windarto

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).