Analisis Sentimen Pengguna Terhadap Aplikasi Bing Chat di Google Play Store dengan Metode Naïve Bayes
DOI:
https://doi.org/10.30865/klik.v4i5.1769Keywords:
Artificial Intelligence; Bing Chat; Google Play Store; Sentiment; Naïve BayesAbstract
The development of technology that occurs at this time is increasingly rapid, so it can be said to be an era of technological revolution where at this time almost all activities in society have used technology. One of the technologies that emerged in the current era of technological development is artificial intelligence(AI) technology. Artificial intelligence refers to the ability of computers to learn, adapt, and make decisions based on data. Currently, there are many artificial intelligence technologies in the form of applications that can be easily downloaded for free on the Google Play Store, one of which is the application resulting from the partnership between Microsoft and OpenAI, namely Bing Chat. The presence of Bing Chat as one of the artificial intelligence applications on the Google Play Store raises various user reviews while using the artificial intelligence technology. Based on this, a method is needed to analyze the various reviews on the Bing Chat application. This research aims to analyze user sentiment reviews of the Bing Chat application on the Google Play Store with the Naïve Bayes method. A total of 2000 user sentiment review data for the Bing Chat application on the Google Play Store in the January to February 2024 timeframe were collected using the web scrapping method. After going through the analysis process, 1877 sentiment data were obtained with 1653 positive sentiment data and 224 negative sentiment data. The evaluation results of this research on the sentiment of the Bing Chat application on the Google Play Store with the Naïve Bayes algorithm method get the results of the accuracy value of 67.16%, precision 93.53%, and recall 67.39%.
Downloads
References
S. Suginam, “Transformasi Digital di Masa Pandemi Covid 19: Studi Fenomenologi Pada UKM Kota Medan,” Journal of Business and Economics Research (JBE), vol. 3, no. 2, pp. 296–299, 2022, Accessed: Feb. 28, 2024. [Online]. Available: https://ejurnal.seminar-id.com/index.php/jbe/index
U. Muzakir, B. Baharuddin, A. Manuhutu, and H. Widoyo, “Penerapan Kecerdasan Buatan Dalam Sistem Informasi: Tinjauan Literatur Tentang Aplikasi, Etika, dan Dampak Sosial,” Jurnal Review Pendidikan dan Pengajaran (JRPP), vol. 6, no. 4, pp. 1163–1169, 2023, Accessed: Feb. 28, 2024. [Online]. Available: https://journal.universitaspahlawan.ac.id/index.php/jrpp/index
Kharisma Agustya Zahra Salsabilla, Tasya Diva Fortuna Hadi, Widya Pratiwi, and Siti Mukaromah, “PENGARUH PENGGUNAAN KECERDASAN BUATAN TERHADAP MAHASISWA DI PERGURUAN TINGGI,” SEMINAR NASIONAL TEKNOLOGI DAN SISTEM INFORMASI, vol. 3, no. 1, pp. 168–175, Sep. 2023, doi: https://doi.org/10.33005/sitasi.v3i1.371.
A. Afgiansyah, “Artificial Intelligence Neutrality: Framing Analysis of GPT Powered-Bing Chat and Google Bard,” Jurnal Riset Komunikasi, vol. 6, no. 2, pp. 179–193, 2023, Accessed: Feb. 28, 2024. [Online]. Available: https://jurnalrisetkomunikasi.org/index.php/jrk/index
P. Aditiya, U. Enri, and I. Maulana, “Analisis Sentimen Ulasan Pengguna Aplikasi Myim3 Pada Situs Google Play Menggunakan Support Vector Machine,” JURIKOM (Jurnal Riset Komputer), vol. 9, no. 4, pp. 1020–1028, 2022, Accessed: Feb. 28, 2024. [Online]. Available: http://www.ejurnal.stmik-budidarma.ac.id/index.php/jurikom/index
N. B. Sidauruk and N. Riza, “SENTIMEN ANALISIS DATA PENGGUNA TERHADAP KAI ACCESS,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 7, no. 2, pp. 1297–1303, 2023, Accessed: Feb. 28, 2024. [Online]. Available: https://ejournal.itn.ac.id/index.php/jati/index
A. I. Tanggraeni and M. N. N. Sitokdana, “Analisis Sentimen Aplikasi E-Government pada Google Play Menggunakan Algoritma Naïve Bayes,” JATISI (Jurnal Teknik Informatika dan Sistem Informasi), vol. 9, no. 2, pp. 785–795, 2022, Accessed: Feb. 28, 2024. [Online]. Available: https://jurnal.mdp.ac.id/index.php/jatisi/index
B. Laurensz and E. Sediyono, “Analisis Sentimen Masyarakat terhadap Tindakan Vaksinasi dalam Upaya Mengatasi Pandemi Covid-19,” Jurnal Nasional Teknik Elektro dan Teknologi Informasi, vol. 10, no. 2, 2021.
I. Zulfahmi, “Analisis Sentimen Aplikasi PLN Mobile Menggunakan Metode Decission Tree,” Jurnal Penelitian Rumpun Ilmu Teknik, vol. 3, no. 1, pp. 11–21, 2024, Accessed: Feb. 28, 2024. [Online]. Available: https://ejurnal.politeknikpratama.ac.id/index.php/JUPRIT/index
U. Kusnia and F. Kurniawan, “Analisis Sentimen Review Aplikasi Media Berita Online Pada Google Play menggunakan Metode Algoritma Support Vector Machines (SVM) Dan Naive Bayes,” Explore IT: Jurnal Keilmuan dan Aplikasi Teknik Informatika, vol. 14, no. 1, pp. 24–28, 2022.
M. M. Alfitri, N. Nurahman, M. Minarni, and D. Rusda, “Evaluasi Performa Algoritma Naïve Bayes Dalam Mengklasifikasi Penerima Bantuan Pangan Non Tunai,” Jurnal Media Informatika Budidarma, vol. 7, no. 3, pp. 1433–1445, 2023, Accessed: Feb. 28, 2024. [Online]. Available: http://www.ejurnal.stmik-budidarma.ac.id/index.php/mib/index
M. Muslimin and V. Lusiana, “Analisis Sentimen Terhadap Kenaikan Harga Bahan Pokok Menggunakan Metode Naive Bayes Classifier,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 7, no. 3, pp. 1200–1209, 2023, Accessed: Feb. 28, 2024. [Online]. Available: http://www.ejurnal.stmik-budidarma.ac.id/index.php/mib/index
I. Novitasari, T. B. Kurniawan, and D. A. Dewi, “Analisis Sentimen Masyarakat Terhadap Tweet Ruang Guru Menggunakan Algoritma Naive Bayes Classifier (NBC),” Jurnal Mantik, vol. 6, no. 3, pp. 3308–3318, 2022, Accessed: Feb. 28, 2024. [Online]. Available: https://iocscience.org/ejournal/index.php/mantik/index
M. N. Fahriza and N. Riza, “ANALISIS SENTIMEN PADA ULASAN APLIKASI CHAT GENERATIVE PRE-TRAINED TRANSFORMER GPT MENGGUNAKAN METODE KLASIFIKASI K-NEAREST NEIGHBOR (KNN),” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 7, no. 2, pp. 1351–1358, 2023, Accessed: Feb. 28, 2024. [Online]. Available: https://ejournal.itn.ac.id/index.php/jati/index
R. T. Handayanto, H. Herlawati, P. D. Atika, F. N. Khasanah, A. Y. P. Yusuf, and D. Y. Septia, “Analisis Sentimen Pada Situs Google Review dengan Naïve Bayes dan Support Vector Machine,” Jurnal Komtika (Komputasi dan Informatika), vol. 5, no. 2, pp. 153–163, 2021, Accessed: Feb. 28, 2024. [Online]. Available: https://journal.unimma.ac.id/index.php/komtika/index
N. P. G. Naraswati, R. Nooraeni, D. C. Rosmilda, D. Desinta, F. Khairi, and R. Damaiyanti, “Analisis Sentimen Publik dari Twitter Tentang Kebijakan Penanganan Covid-19 di Indonesia dengan Naive Bayes Classification,” Sistemasi: Jurnal Sistem Informasi, vol. 10, no. 1, pp. 222–238, 2021, Accessed: Feb. 28, 2024. [Online]. Available: http://sistemasi.ftik.unisi.ac.id/index.php/stmsi/index
T. V. Meiyanti, M. Hatta, and A. Sevtiana, “Analisis Sentimen Mahasiswa Dengan Dosen Menggunakan Metode Naïve Bayes Classifier Pada Kuesioner Dosen,” Jurnal Manajemen Sistem Informasi, vol. 1, no. 2, pp. 55–59, 2023, Accessed: Feb. 28, 2024. [Online]. Available: https://jurnal.cic.ac.id/index.php/jurminsi/index
W. Yulita, “Analisis sentimen terhadap opini masyarakat tentang vaksin covid-19 menggunakan algoritma naïve bayes classifier,” Jurnal Data Mining dan Sistem Informasi, vol. 2, no. 2, pp. 1–9, 2021, Accessed: Feb. 28, 2024. [Online]. Available: https://ejurnal.teknokrat.ac.id/index.php/JDMSI/index
M. Kholilullah, M. Martanto, and U. Hayati, “ANALISIS SENTIMEN PENGGUNA TWITTER (X) TENTANG PIALA DUNIA USIA 17 MENGGUNAKAN METODE NAIVE BAYES,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 8, no. 1, pp. 392–398, 2024, Accessed: Feb. 28, 2024. [Online]. Available: https://ejournal.itn.ac.id/index.php/jati/index
E. Indrayuni, A. Nurhadi, and D. A. Kristiyanti, “Implementasi Algoritma Naive Bayes, Support Vector Machine, dan K-Nearest Neighbors untuk Analisa Sentimen Aplikasi Halodoc,” Faktor Exacta, vol. 14, no. 2, pp. 64–71, 2021, Accessed: Feb. 28, 2024. [Online]. Available: https://journal.lppmunindra.ac.id/index.php/Faktor_Exacta/index
Z. Annisa and B. S. S. Ulama, “Analisis Sentimen Data Ulasan Pengguna Aplikasi ‘PeduliLindungi’ pada Google Play Store Menggunakan Metode Naïve Bayes Classifier Model Multinomial,” Jurnal Sains dan Seni ITS, vol. 11, no. 6, pp. D464–D471, 2023, Accessed: Apr. 02, 2024. [Online]. Available: https://ejurnal.its.ac.id/index.php/sains_seni/index
A. Putri et al., “Komparasi Algoritma K-NN, Naive Bayes dan SVM untuk Prediksi Kelulusan Mahasiswa Tingkat Akhir: Comparison of K-NN, Naive Bayes and SVM Algorithms for Final-Year Student Graduation Prediction,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 3, no. 1, pp. 20–26, 2023, Accessed: Apr. 02, 2024. [Online]. Available: https://journal.irpi.or.id/index.php/malcom/index
D. Sandi, E. Utami, and K. Kusnawi, “Analisis Sentimen Publik Terhadap Elektabilitas Ganjar Pranowo di Tahun Politik 2024 di Twitter dengan Algoritma KNN dan Naïve Bayes,” Jurnal Media Informatika Budidarma, vol. 7, no. 3, pp. 1097–1108, 2023, Accessed: Feb. 28, 2024. [Online]. Available: https://ejurnal.stmik-budidarma.ac.id/index.php/mib/index
I. Verawati and B. S. Audit, “Algoritma Naïve Bayes Classifier Untuk Analisis Sentiment Pengguna Twitter Terhadap Provider By. u,” Jurnal Media Informatika Budidarma, vol. 6, no. 3, pp. 1411–1417, 2022, Accessed: Feb. 28, 2024. [Online]. Available: http://www.ejurnal.stmik-budidarma.ac.id/index.php/mib/index
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Analisis Sentimen Pengguna Terhadap Aplikasi Bing Chat di Google Play Store dengan Metode Naïve Bayes
ARTICLE HISTORY
Issue
Section
Copyright (c) 2024 Dimas Cahyo Ramadhan, Faldy Irwiensyah

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).