Analisis Sentimen Ulasan Aplikasi Samsat Digital Nasional Pada Google Playstore Menggunakan Algoritma Naïve Bayes


Authors

  • Deni Wijaya Universitas Muhammadiyah Prof. Dr. Hamka, Jakarta, Indonesia
  • Rizki Adi Saputra Universitas Muhammadiyah Prof. Dr. Hamka, Jakarta, Indonesia
  • Faldy Irwiensyah Universitas Muhammadiyah Prof. Dr. Hamka, Jakarta, Indonesia

DOI:

https://doi.org/10.30865/klik.v4i4.1738

Keywords:

Samsat; Signal; Naïve Bayes; Rapidminer; Reviews; Data; Sentiment Analysis; Google Playstore

Abstract

Digital transformation has become a major factor of change in various aspects of modern life, including business, education, and government. In the current era of digital transformation, the government is trying to improve efficiency and services to the community through the implementation of various technological innovations. The application of digital technology in public services is increasingly widespread, including in the administrative service sector such as the National Digital Samsat (SIGNAL) which allows people to make online vehicle tax payments through the SIGNAL application. User evaluations of this application can provide important insights for service providers. This research aims to analyze the sentiment of user reviews of the National Digital Samsat application on the Google Playstore platform using the Naïve Bayes algorithm. This method is used to classify user reviews into positive and negative sentiment categories. From 2000 reviews taken, 1,665 reviews were categorized as positive and 335 reviews as negative after manual labeling. Data preprocessing using RapidMiner includes cleaning, transform cases, tokenizing, stopword filter, token by length filter, and stemming. TF-IDF weighting is used to give weight to each word in the document. Evaluation of the Naïve Bayes model resulted in an accuracy of 63.61%, with 307 True Positives, 74 True Negatives, 26 False Positives, and 192 False Negatives. Precision was 92.19% and recall was 61.52%. The overall analysis shows that user reviews tend to be more positive towards the SIGNAL app, although there are some negative reviews. This conclusion gives an idea of users' positive perception of the app

Downloads

Download data is not yet available.

References

V. Lauwrenza and W. Agustiningsih, “Pengaruh Pengetahuan Wajib Pajak, Sosialisasi Pajak, Dan Penerapan Aplikasi Samsat Digital Nasional (Signal) Terhadap Kepatuhan Wajib Pajak Di Kabupaten Tangerang,” JURNAL PAJAK INDONESIA (Indonesian Tax Review), vol. 7, no. 1, pp. 37–44, 2023.

S. H. W. Putra and D. Febriawan, “Analisis Sentimen Ulasan Aplikasi Digital Korlantas POLRI Menggunakan Naïve Bayes pada Google Play Store,” KLIK: Kajian Ilmiah Informatika dan Komputer, vol. 4, no. 4, pp. 1962–1971, 2024.

S. Devaranti, H. A. Murodi, and M. Machrunnisa, “INOVASI PELAYANAN PAJAK KENDARAAN BERMOTOR MELALUI APLIKASI SIGNAL (SAMSAT DIGITAL NASIONAL) DI UPTD KANTOR SAMSAT BALARAJA KABUPATEN TANGERANG,” Jurnal Administrasi Negara, vol. 29, no. 2, pp. 127–146, Aug. 2023, doi: 10.33509/jan.v29i2.2637.

Siska Rafitanuri, Nur Arsyida, and Rizky Gunawan, “ANALISIS TINGKAT KEPUASAN MASYARAKAT TERHADAP PELAYANAN PEMBAYARAN PAJAK KENDARAAN BERMOTOR BERBASIS APLIKASI SIGNAL DI KANTOR SAMSAT KOTA TANJUNGPINANG,” JURNAL HUKUM, POLITIK DAN ILMU SOSIAL, vol. 1, no. 3, pp. 92–103, Sep. 2022, doi: 10.55606/jhpis.v1i3.537.

M. R. Fahlevvi, “ANALISIS SENTIMEN TERHADAP ULASAN APLIKASI PEJABAT PENGELOLA INFORMASI DAN DOKUMENTASI KEMENTERIAN DALAM NEGERI REPUBLIK INDONESIA DI GOOGLE PLAYSTORE MENGGUNAKAN METODE SUPPORT VECTOR MACHINE,” Jurnal Teknologi dan Komunikasi Pemerintahan, vol. 4, no. 1, pp. 1–13, Jun. 2022, doi: 10.33701/jtkp.v4i1.2701.

Rina Noviana and Isram Rasal, “PENERAPAN ALGORITMA NAIVE BAYES DAN SVM UNTUK ANALISIS SENTIMEN BOY BAND BTS PADA MEDIA SOSIAL TWITTER,” Jurnal Teknik dan Science, vol. 2, no. 2, pp. 51–60, Jun. 2023, doi: 10.56127/jts.v2i2.791.

V. Alviani, S. Alam, and I. Kurniawan, “ANALISIS SENTIMEN REVIEW APLIKASI WETV PADA PLATFORM TWITTER MENGGUNAKAN SUPPORT VECTOR MACHINE,” STORAGE: Jurnal Ilmiah Teknik dan Ilmu Komputer, vol. 2, no. 3, pp. 143–149, Aug. 2023, doi: 10.55123/storage.v2i3.2351.

R. Maulana, A. Voutama, and T. Ridwan, “Analisis Sentimen Ulasan Aplikasi MyPertamina pada Google Play Store menggunakan Algoritma NBC,” Jurnal Teknologi Terpadu, vol. 9, no. 1, pp. 42–48, Jul. 2023, doi: 10.54914/jtt.v9i1.609.

Merinda Lestandy, Abdurrahim Abdurrahim, and Lailis Syafa’ah, “Analisis Sentimen Tweet Vaksin COVID-19 Menggunakan Recurrent Neural Network dan Naïve Bayes,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 4, pp. 802–808, Aug. 2021, doi: 10.29207/resti.v5i4.3308.

H. Z. Muflih, A. R. Abdillah, and F. N. Hasan, “Analisis Sentimen Ulasan Pengguna Aplikasi Ajaib Menggunakan Metode Naïve Bayes,” KLIK: Kajian Ilmiah Informatika dan Komputer, vol. 4, no. 3, pp. 1613–1621, 2023.

J. Jefriyanto, N. Ainun, and M. A. Al Ardha, “Application of Naïve Bayes Classification to Analyze Performance Using Stopwords,” Journal of Information System, Technology and Engineering, vol. 1, no. 2, pp. 49–53, Jun. 2023, doi: 10.61487/jiste.v1i2.15.

E. P. Sutrisno and S. Amini, “IMPLEMENTASI ALGORITMA K-NEAREST NEIGHBOR PADA ANALISIS SENTIMEN ULASAN PENGGUNA APLIKASI DIGITAL KORLANTAS POLRI,” in Prosiding Seminar Nasional Mahasiswa Fakultas Teknologi Informasi (SENAFTI), vol. 2, no. 2, pp. 687–695, 2023.

N. L. Lavenia and R. Permatasari, “Sentiment Analysis on Twitter Social Media Regarding Depression Disorder Using the Naive Bayes Method,” CoreID Journal, vol. 1, no. 2, pp. 66–74, Jul. 2023, doi: 10.60005/coreid.v1i2.14.

S. Alam and M. I. Sulistyo, “Analisis Sentimen Berdasarkan Ulasan Pengguna Aplikasi Mypertamina Pada Google Playstore Menggunakan Metode Naïve Bayes,” Storage: Jurnal Ilmiah Teknik Dan Ilmu Komputer, vol. 2, no. 3, pp. 100–108, 2023.

E. Hasibuan and E. A. Heriyanto, “Analisis Sentimen Pada Ulasan Aplikasi Amazon Shopping Di Google Play Store Menggunakan Naive Bayes Classifier,” Jurnal Teknik dan Science, vol. 1, no. 3, pp. 13–24, 2022.

Y. Nurtikasari, S. Alam, and T. I. Hermanto, “Analisis Sentimen Opini Masyarakat Terhadap Film Pada Platform Twitter Menggunakan Algoritma Naive Bayes,” INSOLOGI: Jurnal Sains dan Teknologi, vol. 1, no. 4, pp. 411–423, 2022.

D. Pratmanto, R. Rousyati, F. F. Wati, A. E. Widodo, S. Suleman, and R. Wijianto, “App Review Sentiment Analysis Shopee Application In Google Play Store Using Naive Bayes Algorithm,” J Phys Conf Ser, vol. 1641, no. 1, p. 012043, Nov. 2020, doi: 10.1088/1742-6596/1641/1/012043.

S. H. Ramadhani and M. I. Wahyudin, “Analisis Sentimen Terhadap Vaksinasi Astra Zeneca pada Twitter Menggunakan Metode Naïve Bayes dan K-NN,” Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi), vol. 6, no. 4, pp. 526–534, 2022.

W. A. Prabowo and F. Azizah, “Sentiment Analysis for Detecting Cyberbullying Using TF-IDF and SVM,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 4, no. 6, Dec. 2020, doi: 10.29207/resti.v4i6.2753.

A. Saputra and F. Noor Hasan, “ANALISIS SENTIMEN TERHADAP APLIKASI COFFEE MEETS BAGEL DENGAN ALGORITMA NAÏVE BAYES CLASSIFIER,” SIBATIK JOURNAL: Jurnal Ilmiah Bidang Sosial, Ekonomi, Budaya, Teknologi, dan Pendidikan, vol. 2, no. 2, pp. 465–474, Jan. 2023, doi: 10.54443/sibatik.v2i2.579.

N. L. P. M. Putu, Ahmad Zuli Amrullah, and Ismarmiaty, “Analisis Sentimen dan Pemodelan Topik Pariwisata Lombok Menggunakan Algoritma Naive Bayes dan Latent Dirichlet Allocation,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 1, pp. 123–131, Feb. 2021, doi: 10.29207/resti.v5i1.2587.

Ericha Apriliyani and Y. Salim, “Analisis performa metode klasifikasi Naïve Bayes Classifier pada Unbalanced Dataset,” Indonesian Journal of Data and Science, vol. 3, no. 2, pp. 47–54, Jul. 2022, doi: 10.56705/ijodas.v3i2.45.

Yuyun, Nurul Hidayah, and Supriadi Sahibu, “Algoritma Multinomial Naïve Bayes Untuk Klasifikasi Sentimen Pemerintah Terhadap Penanganan Covid-19 Menggunakan Data Twitter,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 4, pp. 820–826, Aug. 2021, doi: 10.29207/resti.v5i4.3146.

N. Riyanah and F. Fatmawati, “Penerapan Algoritma Naive Bayes Untuk Klasifikasi Penerima Bantuan Surat Keterangan Tidak Mampu,” JTIM?: Jurnal Teknologi Informasi dan Multimedia, vol. 2, no. 4, pp. 206–213, Feb. 2021, doi: 10.35746/jtim.v2i4.117.

D.-H. Vu, “Privacy-preserving Naive Bayes classification in semi-fully distributed data model,” Comput Secur, vol. 115, p. 102630, Apr. 2022, doi: 10.1016/j.cose.2022.102630.

A. R. Damanik, S. Sumijan, and G. W. Nurcahyo, “Prediksi Tingkat Kepuasan dalam Pembelajaran Daring Menggunakan Algoritma Naïve Bayes,” Jurnal Sistim Informasi dan Teknologi, pp. 88–94, Aug. 2021, doi: 10.37034/jsisfotek.v3i3.49.

W. M. Shaban, A. H. Rabie, A. I. Saleh, and M. A. Abo-Elsoud, “Accurate detection of COVID-19 patients based on distance biased Naïve Bayes (DBNB) classification strategy,” Pattern Recognit, vol. 119, p. 108110, Nov. 2021, doi: 10.1016/j.patcog.2021.108110.

S. Dey, S. Wasif, D. S. Tonmoy, S. Sultana, J. Sarkar, and M. Dey, “A Comparative Study of Support Vector Machine and Naive Bayes Classifier for Sentiment Analysis on Amazon Product Reviews,” in 2020 International Conference on Contemporary Computing and Applications (IC3A), IEEE, Feb. 2020, pp. 217–220. doi: 10.1109/IC3A48958.2020.233300.

Y. Choi, G. Farnadi, B. Babaki, and G. Van den Broeck, “Learning Fair Naive Bayes Classifiers by Discovering and Eliminating Discrimination Patterns,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 06, pp. 10077–10084, Apr. 2020, doi: 10.1609/aaai.v34i06.6565.

Pristiyono, M. Ritonga, M. A. Al Ihsan, A. Anjar, and F. H. Rambe, “Sentiment analysis of COVID-19 vaccine in Indonesia using Naïve Bayes Algorithm,” IOP Conf Ser Mater Sci Eng, vol. 1088, no. 1, p. 012045, Feb. 2021, doi: 10.1088/1757-899X/1088/1/012045.

R. Ardianto, T. Rivanie, Y. Alkhalifi, F. S. Nugraha, and W. Gata, “SENTIMENT ANALYSIS ON E-SPORTS FOR EDUCATION CURRICULUM USING NAIVE BAYES AND SUPPORT VECTOR MACHINE,” Jurnal Ilmu Komputer dan Informasi, vol. 13, no. 2, pp. 109–122, Jul. 2020, doi: 10.21609/jiki.v13i2.885.

J. Gu and S. Lu, “An effective intrusion detection approach using SVM with naïve Bayes feature embedding,” Comput Secur, vol. 103, p. 102158, Apr. 2021, doi: 10.1016/j.cose.2020.102158.

Alvina Felicia Watratan, Arwini Puspita. B, and Dikwan Moeis, “Implementasi Algoritma Naive Bayes Untuk Memprediksi Tingkat Penyebaran Covid-19 Di Indonesia,” Journal of Applied Computer Science and Technology, vol. 1, no. 1, pp. 7–14, Jul. 2020, doi: 10.52158/jacost.v1i1.9.

F. I. Adiba, T. Islam, M. S. Kaiser, M. Mahmud, and M. A. Rahman, “Effect of Corpora on Classification of Fake News using Naive Bayes Classifier,” International Journal of Automation, Artificial Intelligence and Machine Learning, Oct. 2020, doi: 10.61797/ijaaiml.v1i1.45.

M. D. Hendriyanto, A. A. Ridha, and U. Enri, “Analisis Sentimen Ulasan Aplikasi Mola Pada Google Play Store Menggunakan Algoritma Support Vector Machine,” INTECOMS: Journal of Information Technology and Computer Science, vol. 5, no. 1, pp. 1–7, Apr. 2022, doi: 10.31539/intecoms.v5i1.3708.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Analisis Sentimen Ulasan Aplikasi Samsat Digital Nasional Pada Google Playstore Menggunakan Algoritma Naïve Bayes

Dimensions Badge

ARTICLE HISTORY


Published: 2024-02-29
Abstract View: 1460 times
PDF Download: 1395 times