Prediksi Penjualan Harian dengan Menggunakan Metode Trend Moment pada Depot Air Minum Isi Ulang


Authors

  • Kelik Sussolaikah Universitas PGRI Madiun, Madiun, Indonesia
  • Puguh Jayadi Universitas PGRI Madiun, Madiun, Indonesia
  • Wahyuni STMIK Widya Cipta Darma, Samarinda, Indonesia
  • David Andrianto Putra STMIK Widya Cipta Darma, Samarinda, Indonesia

DOI:

https://doi.org/10.30865/klik.v4i4.1629

Keywords:

Trend Moment; Website; Prediction; Waterfalls; Sales Prediction

Abstract

The business of refill drinking water depot is a business initiative that focuses on selling refilled drinking water. These depots face fluctuating demand over time, which create challenges in planning inventory and production effectively and effectively. This research aimed to apply the Trend Moment method to predict daily sales of Refill Drinking Water Depot, which allows the recognition of trends and fluctuation patterns based on existing historical sales data. Through analysis of previous sales data, the depot can describe demand development patterns and fluctuations variations. This data is combined into a prediction model to produce more precise future sales forecasts. This study applies the Waterfall Model method in the system creation process. Analysis, design, application, testing, delivery and maintenance are applied in developing a web system for daily sales predictions. The application of the trend moment method produces entirely satisfactory sales predictions. Even though the Mean Absolute Percentage Error (MAPE) figure exceeds the ideal limit of less than 50%, this model still provides essential views and insights for understanding sales patterns and trends. The low Mean Squared Error (MSE) value accurately predicts sales. Hopefully, this study can effectively forecast daily sales at the Refill Drinking Water Depot. This web-based prediction system can support business owners in analyzing expected sales patterns and increasing efficiency in their operations

Downloads

Download data is not yet available.

References

I. Yulian, D. Sri Anggraeni, and Q. Aini, “Penerapan Metode Trend Moment Dalam Forecasting Penjualan Produk Cv. Rabbani Asyisa,” JURTEKSI ( J. Teknol. dan Sist. Inf. ), vol. 6, no. 2, pp. 2407–1811, 2020.

M. Guntur, J. Santony, and Y. Yuhandri, “Prediksi Harga Emas dengan Menggunakan Metode Naïve Bayes dalam Investasi untuk Meminimalisasi Resiko,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 2, no. 1, pp. 354–360, 2018, doi: 10.29207/resti.v2i1.276.

H. P. Hutrim and L. Bachtiar, “Aplikasi Pendukung Keputusan Prediksi Penjualan Air Minum Isi Ulang Menggunakan Metode Trend Moment,” Jutisi J. Ilm. Tek. Inform. dan Sist. Inf., vol. 11, no. 3, pp. 583–592, 2022.

N. Indah Kusuma Wardhani, I. Hartami S, and W. Dwi Puspitasari, “Sistem Forecasting Penjualan Beras Dengan Menerapkan Metode Trend Moment,” JATI (Jurnal Mhs. Tek. Inform., vol. 6, no. 2, pp. 901–907, 2022, doi: 10.36040/jati.v6i2.5780.

M. Farida, M. G. Rohman, T. Informatika, F. Teknik, and U. I. Lamongan, “Memprediksi Jumlah Penjualan Hijab Dengan Menggunakan Metode Trend Moment ( Studi Kasus?: Toko Neena Hijab ),” vol. 7, no. 3, pp. 11–20, 2023.

S. Alawiyah, B. U. Latifah, and K. N. Nabila, “Prediksi Penjualan Bibit Alpokat Dengan Menggunakan Trend Moment Berbasis Mobile,” vol. 2, no. September 2019, pp. 163–170, 2023.

S. Adiguno, Y. Syahra, and M. Yetri, “Prediksi Peningkatan Omset Penjualan Menggunakan Metode Regresi Linier Berganda,” J. Sist. Inf. Triguna Dharma (JURSI TGD), vol. 1, no. 4, p. 275, 2022, doi: 10.53513/jursi.v1i4.5331.

A. B. Evi Dewi Sri Mulyani, “Prediksi Kurs Rupiah Terhadap Dollar Amerika Menggunakan Metode Trend Moment,” J. Inovtek Polbeng, pp. 149–155, 2019.

A. Meizar, W. Fahrozi, E. Indra, and M. Saputra, “Analisis Trend Moment Pada Datamining Forecasting Dalam Memprediksi Jumlah Persediaan Obat Herbal,” J. Sist. Inf. dan Ilmu Komput. Prima(JUSIKOM PRIMA), vol. 5, no. 2, pp. 103–106, 2022, doi: 10.34012/jurnalsisteminformasidanilmukomputer.v5i2.2452.

R. Prayoga, A. Anita, J. Silaban, and ..., “Analisis Metode Trend Moment Dalam Forecasting Untuk Memprediksi Jumlah Penjualan Pada Restoran Ayam Geprek Gokil,” … (Teknik Inf. dan …, vol. 6, pp. 127–134, 2023, doi: 10.37600/tekinkom.v6i1.892.

A. S. Fitriyana, “Sistem Informasi Penjualan Oleh Sales Marketing Pada Pt Erlangga Mahameru,” J. Teknol. dan Sist. Inf., p. 106, 2020.

A. F. Andrian and M. Crisly, “Perancangan Sistem Aplikasi Web Pada Penjualan Nasi Uduk Dengan Metode Waterfall,” OKTAL J. Ilmu Komput. …, vol. 2, no. 9, pp. 2490–2499, 2023

F. M. Putri, “Tingkat Peramalan Penjualan Produk Bordir dan Sulaman Menggunakan Metode Trend Moment,” J. Inform. Ekon. Bisnis, vol. 4, pp. 34–38, 2022, doi: 10.37034/infeb.v4i2.122.

A. Amrullah, E. Affandi, W. Riansyah, and S. Sobirin, “Peramalan Penjualan Bulanan menggunakan metode Trend Moment pada Toko Suamzu Boutique,” J. SAINTIKOM (Jurnal Sains Manaj. Inform. dan Komputer), vol. 19, no. 2, p. 46, 2020, doi: 10.53513/jis.v19i2.2423.

K. Sussolaikah, “Market Basket Analysis for Determination of Consumer Behavior at XYZ Stores Using R Programming,” Adv. Sustain. Sci. Eng. Technol., vol. 3, no. 2, p. 0210206, 2021, doi: 10.26877/asset.v3i2.8547.

M. Ilmi, A. Mahmudi, and Y. Agus Pranoto, “Prediksi Penjualan Bibit Ikan Air Tawar Pada Ibat Pandaan Menggunakan Metode Trend Moment,” JATI (Jurnal Mhs. Tek. Inform., vol. 4, no. 2, pp. 222–229, 2020, doi: 10.36040/jati.v4i2.2704.

R. N. Nasution, “Sistem Analisis Prediksi Penjualan Vitamin di Apotek Menggunakan Metode Trend Moment,” JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 5, p. 1356, 2022, doi: 10.30865/jurikom.v9i5.4715.

R. Firmansyah, S. Puspitorini, P. Pariyadi, and T. Syah, “Sales and Stock Purchase Prediction System Using Trend Moment Method and FIS Tsukamoto,” Arcitech J. Comput. Sci. Artif. Intell., vol. 1, no. 1, p. 15, 2021, doi: 10.29240/arcitech.v1i1.3057.

I. R. Ida Nabillah, “Mean Absolute Percentage Error untuk Evaluasi Hasil Prediksi Komoditas Laut,” J. Inf. Syst., p. 252, 2020.

P. P. Krisma, Alviani Azhari, Muhammad Widagdo, “Perbandingan Metode Double Exponential Smoothing Dan Triple Exponential Smoothing Dalam Parameter Tingkat Error Mean Absolute Percentage Error (MAPE) dan Means Absolute Deviation (MAD) Alviani Krisma Putut Pamilih Widagdo Kata kunci-forecasting, Double Ex,” Pros. Semin. Nas. Ilmu Komput. dan Teknol. Inf., vol. 4, no. 2, pp. 81–87, 2019.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Prediksi Penjualan Harian dengan Menggunakan Metode Trend Moment pada Depot Air Minum Isi Ulang

Dimensions Badge

ARTICLE HISTORY


Published: 2024-02-12
Abstract View: 758 times
PDF Download: 917 times