Implementasi Data Mining Dengan Metode FP-Growth Terhadap Data Penjualan Barang Sebagai Strategi Penjualan Pada CV. A & A Copier
Keywords:
FP-Growth algorithm; Rule Association; Sales strategy; Sales Data; Data MiningAbstract
If the seller wants to increase sales, the diversity of consumers will undoubtedly be an impediment in selecting the product to be purchased. Another issue is that vendors/decision makers struggle to select products to be re-marketed in accordance with the diversity of consumers. It is necessary to process sales data in the form of goods transactions in order to generate useful information that can be used to determine the best strategy for increasing sales. The study's goal is to analyze the FP-Growth algorithm on data sales of goods in order to make recommendations in providing sales packages for consumers as a sales strategy at CV. A & A. Data sources gathered through direct observations and interviews with the CV. A & A Copier Pematangsiantar Store. The FP-Growth algorithm is employed. RapidMiner software is used in the analysis process. 5 rules were generated from 50 transaction data records using the Market Basket Analysis application on FP-Growth on data on sales of goods, with a minimum support value of 0.4 (40 percent) and confidence of 0.95 (95 percent ). It is hoped that the research findings will provide benefits in the form of information that will assist sellers (the Stores) in selecting the best product marketing strategy to increase sales..
Downloads
References
H. Subing and F. Saputra, “Analisis Strategi Pemasaran Untuk Meningkatkan Penjualan Motor Merk Mio J CW FI Pada PT. Bahana Pagar Alam Di Bandar Lampung.,” Jurnal Manajemen dan Bisnis Universitas Bandar Lampung, vol. 4, no. 2, p. 112194, 2014.
A. Muzakir and L. Adha, “Market Basket Analysis (Mba) Pada Situs Web E-Commerce Zakiyah Collection,” Simetris?: Jurnal Teknik Mesin, Elektro dan Ilmu Komputer, vol. 7, no. 2, p. 459, 2016, doi: 10.24176/simet.v7i2.755.
S. S. Weng and M. J. Liu, “Feature-based recommendations for one-to-one marketing,” Expert Systems with Applications, vol. 26, no. 4, pp. 493–508, 2004, doi: 10.1016/j.eswa.2003.10.008.
Y. L. Chen, K. Tang, R. J. Shen, and Y. H. Hu, “Market basket analysis in a multiple store environment,” Decision Support Systems, vol. 40, no. 2, pp. 339–354, 2005, doi: 10.1016/j.dss.2004.04.009.
S. Istiqomah and T. S. Yanti, “Penggunaan Algoritma Novel Utility Frequent Itemset Mining dalam Market Basket Analysis ( Kasus Data Transaksional dan Data Profit di PT . XYZ Kota Malang ) informasi yang berguna dari gudang penyimpanan data dalam format bukan lagi menjadi satu pekerjaan,” Prosiding Statiska, vol. 5, pp. 32–39, 2019.
S. Raj, D. Ramesh, and K. K. Sethi, “A Spark-based Apriori algorithm with reduced shuffle overhead,” Journal of Supercomputing, vol. 77, no. 1, pp. 133–151, 2021, doi: 10.1007/s11227-020-03253-7.
A. Abdullah, “Rekomendasi Paket Produk Guna Meningkatkan Penjualan Dengan Metode FP-Growth,” Khazanah Informatika: Jurnal Ilmu Komputer dan Informatika, vol. 4, no. 1, p. 21, 2018, doi: 10.23917/khif.v4i1.5794.
A. N. S. Putro and R. I. Gunawan, “Implementasi Algoritma FP-Growth Untuk Strategi Pemasaran Ritel Hidroponik (Studi Kasus?: PT. HAB),” Jurnal Buana Informatika, vol. 10, no. 1, p. 11, 2019, doi: 10.24002/jbi.v10i1.1746.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Implementasi Data Mining Dengan Metode FP-Growth Terhadap Data Penjualan Barang Sebagai Strategi Penjualan Pada CV. A & A Copier
ARTICLE HISTORY
Issue
Section
Copyright (c) 2021 Anandi Ayu, Agus Perdana Windarto, Dedi Suhendro

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).