Penerapan Algoritma Random Forest Untuk Prediksi Penjualan Dan Sistem Persediaan Produk


Authors

  • Muhammad Syahrul Efendi Universitas Islam Nahdlatul Ulama, Jepara, Indonesia
  • Sarwido Universitas Islam Nahdlatul Ulama, Jepara, Indonesia
  • Akhmad Khanif Zyen Universitas Islam Nahdlatul Ulama, Jepara, Indonesia

DOI:

https://doi.org/10.30865/resolusi.v5i1.2149

Keywords:

Random Forest Algorithm; Sales Prediction; Inventory Management

Abstract

This study aims to optimize sales prediction and inventory management of Bolen Crispy products in Pekalongan Village using the Random Forest algorithm. Bolen Crispy entrepreneurs face challenges in the form of large sales fluctuations and difficulties in managing inventory efficiently. Mistakes in estimating the amount of sales can lead to shortages or excess stock, which has an impact on increasing operational costs and reducing customer satisfaction. This problem of overstocking and understocking has the potential to cause financial losses. The Random Forest algorithm was chosen because of its ability to handle complex data and produce more accurate predictions. By utilizing historical sales data, this algorithm is applied to predict product demand. Testing was carried out using sales data for one year, with a division of 80% for training and 20% for testing. Initial results show that the use of the Random Forest algorithm can increase the accuracy of sales predictions by up to 85%, compared to conventional methods. With more accurate predictions, inventory management becomes more efficient, reducing the risk of shortages and excess stock.

Downloads

Download data is not yet available.

References

A. Nurdin, R. Amelia Zunaidi, M. Arkan Fauzan Wicaksono, and A. Lobita Japtara Martadinata, “Analisis Kredit Pembayaran Biaya Kuliah Dengan Pendekatan Pembelajaran Mesin,” J. Teknol. Inf. dan Ilmu Komput., vol. 10, no. 2, pp. 271–280, 2023, doi: 10.25126/jtiik.20231026301.

F. Wang and J. Aviles, “Enhancing Operational Efficiency: Integrating Machine Learning Predictive Capabilities in Business Intellgence for Informed Decision-Making,” Front. Business, Econ. Manag., vol. 9, no. 1, pp. 282–286, 2023, doi: 10.54097/fbem.v9i1.8694.

K. B. Praveen, P. Kumar, J. Prateek, G. Pragathi, and P. M. J, “Inventory Management System Using Machine Learning,” Int. J. Innov. Eng. Manag. Res., vol. 9, no. 06, pp. 769–785, 2022, doi: 10.48047/ijiemr/v11/i06/51.

I. Khan, A. I. Malik, and B. Sarkar, “A distribution-free newsvendor model considering environmental impact and shortages with price-dependent stochastic demand,” Math. Biosci. Eng., vol. 20, no. 2, pp. 2459–2481, 2023, doi: 10.3934/mbe.2023115.

E. Martins and N. V. Galegale, “Sales forecasting using machine learning algorithms,” Rev. Gestão e Secr. (Management Adm. Prof. Rev., vol. 14, no. 7, pp. 11294–11308, 2023, doi: 10.7769/gesec.v14i7.1670.

Prof. Kiran Likhar, Anish Jha, Sudarshan Tiwari, Alice Sunar, Sanjana Shahu, and Shruti Thate, “Machine Learning-Based Sales Prediction and Inventory Management for Grocery Stores,” Int. J. Adv. Res. Sci. Commun. Technol., pp. 24–32, 2023, doi: 10.48175/ijarsct-13605.

D. R. Putri, D. Swanjaya, and I. N. Farida, “Model Integrasi Algoritma Spectral Clustering Dan Backpropagation Pada Prediksi Penjualan Barang,” J. Nusant. Eng., vol. 7, no. 1, pp. 59–66, 2024, [Online]. Available: https://ojs.unpkediri.ac.id/index.php/noe

R. M. van Steenbergen and M. R. K. Mes, “Forecasting demand profiles of new products,” Decis. Support Syst., vol. 139, no. September, p. 113401, 2020, doi: 10.1016/j.dss.2020.113401.

Putri Choirunisa, “Implementasi Artificial Inteligence Untuk Memprediksi Harga Penjualan Rumah Menggunakan Metode Random Forest Dan Flask,” UII.ac.id, pp. 1–101, 2020.

W. Candra, A. Dharma, C. Christnatalis, and J. P. Turnip, “Implementatiton of Random Forest Algortihm on Sales Data To Predict Churn Potential in Suzuya Supermarket Products,” SinkrOn, vol. 8, no. 2, pp. 866–872, 2023, doi: 10.33395/sinkron.v8i2.12243.

S. Anisya, J. Prayudha, and S. Murniyanti, “Implementasi Metode Random Forest Pada Sistem Persediaan Bahan Kimia Di Laboraturium Forensik Cabang Medan,”, 2020.

A. M. M. Fattah, A. Voutama, N. Heryana, and N. Sulistiyowati, “Pengembangan Model Machine Learning Regresi sebagai Web Service untuk Prediksi Harga Pembelian Mobil dengan Metode CRISP-DM,” JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 5, p. 1669, 2022, doi: 10.30865/jurikom.v9i5.5021.

Prithi M and Tamizharasi K, “Revolutionizing Retail: Machine Learning Applications for Enhanced Customer Experience and Operational Efficiency,” Int. J. Eng. Technol. Manag. Sci., vol. 7, no. 5, pp. 408–411, 2023, doi: 10.46647/ijetms.2023.v07i05.049.

M. E. Sulistyo et al., “Web-Based Health Service Management Information System Development With The Linear Sequential Model Method,” E3S Web Conf., vol. 465, pp. 1–6, 2023, doi: 10.1051/e3sconf/202346502066.

N. Rachma and I. Muhlas, “Comparison Of Waterfall And Prototyping Models In Research And Development (R&D) Methods For Android-Based Learning Application Design,” J. Inov. Inov. Teknol. Inf. dan Inform., vol. 5, no. 1, p. 36, 2022, doi: 10.32832/inova-tif.v5i1.7927.

P. M. J. Samonte, E. Britanico, K. E. M. Antonio, J. E. J. Dela Vega, T. J. P. Espejo, and D. C. Samonte, “Applying Deep Learning for the Prediction of Retail Store Sales,” IEOM Soc. Int., vol. 3, no. 20, pp. 1–11, 2023, doi: 10.46254/af03.20220028.

Mahmud Mustapa, Erwin Gatot Amiruddin, Ezra Maharani Chaniago, and Ummiati Rahmah, “Web-Based Student Payment Administration Information System Using The Waterfall Method,” Ceddi J. Educ., vol. 2, no. 2, pp. 11–23, 2023, doi: 10.56134/cje.v2i2.52.

B. V. Thummadi and K. Lyytinen, “How much method-in-use matters? A case study of agile and waterfall software projects and their design routine variation,” J. Assoc. Inf. Syst., vol. 21, no. 4, pp. 864–900, 2020, doi: 10.17705/1jais.00623.

A. Saravanos and M. X. Curinga, “Simulating the Software Development Lifecycle: The Waterfall Model,” Appl. Syst. Innov., vol. 6, no. 6, 2023, doi: 10.3390/asi6060108.

R. Kang, “Sales Prediction of Big Mart Based on Linear Regression , Random Forest , and Gradient Boosting,” EWA Publ., vol. 17, pp. 200–207, 2023, doi: 10.54254/2754-1169/17/20231094.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Penerapan Algoritma Random Forest Untuk Prediksi Penjualan Dan Sistem Persediaan Produk

Dimensions Badge

ARTICLE HISTORY


Published: 2024-09-30
Abstract View: 1585 times
PDF Download: 3194 times