Clustering Loyalitas Pelanggan Menggunakan Algoritma K-Means Berbasis Web


Authors

  • Diva Shafarina Aprilia Universitas Nurul Jadid Paiton, Probolinggo, Indonesia
  • Sudriyanto Universitas Nurul Jadid Paiton, Probolinggo, Indonesia
  • Moh Jasri Universitas Nurul Jadid Paiton, Probolinggo, Indonesia

DOI:

https://doi.org/10.30865/resolusi.v4i6.2039

Keywords:

Customer Loyalty; K-Means Clustering; Decision-Making Efficiency

Abstract

Active customer engagement in transactions with the company significantly impacts profitability. Categorizing customer data into loyal and non-loyal segments is a common method to identify loyalty patterns. The results of this segmentation can guide companies in designing follow-up strategies, including tailored incentives based on customer loyalty levels. Implementing a web-based K-Means Clustering algorithm allows PT Bhara Utama's management to easily access customer segmentation results, speeding up data analysis and enhancing decision-making efficiency. The use of web technology also facilitates integration with existing information systems and provides more flexible access. An experiment conducted on 660 customer data resulted in three groups: 8 very loyal customers, 461 moderately loyal customers, and 191 non-loyal customers. Accuracy evaluation using the Davies-Bouldin Index (DBI) showed a value of 0.19, indicating high-quality clusters.

Downloads

Download data is not yet available.

References

A. Adiwijaya, M. N. Aulia, M. S. Mubarok, W. U. Novia and F. Nhita, “A comparative study of MFCC-KNN and LPC-KNN for hijaiyyah letters pronounciation classification system,” Information and Communication Technology (ICoIC7), pp. (pp. 1-5), 2017.

I. A. Adriana, Penalaran Komputer Berbasis Kasus (Case Based Reasoning), Yogyakarta: Ardana Media, 2007.

M. N. Al-Kabi, G. Kanaan, R. Al-Shalabi, S. Al-Sinjilawi dan R. S. Al-Mustafa, “Al-Hadith Text Classifier,” Journal of Applied Sciences 5, pp. 584-587, 2005.

A. Kusumaningrum and S. Al-Faraby , “Klasifikasi Informasi, Anjuran dan Larangan pada Hadits Shahih Bukhari menggunakan Metode Support Vector Machine,” e-Proceeding of Engineering, p. 5014, 2017.

A. I. Pratiwi and Adiwijaya, “On the Feature Selection and Classification Based on Information Gain for Document Sentiment Analysis,” Applied Computational Intelligence and Soft Computing, vol. 2018, p. 5, 2018.

A. Desiani dan M. Arhami, Konsep Kecerdasan Buatan, 1 penyunt., D. Hardjono, Penyunt., Yogyakarta: Penerbit ANDI, 2006.

E. Riviera, S. Al-Faraby and Adiwijaya , “Klasifikasi Anjuran, Larangan dan Informasi pada Hadis Sahih Al-Bukhari” e-Proceeding of Engineering, p. 4683, 2017.

S. W. Faza Akmal, “SISTEM PPAKAR UNTUK MENDIAGNOSA PENYAKIT LAMBUNG DENGAN IMPLEMENTASI METODE CBR (CASE BASED REASONING) BERBASIS WEB,” Jurnal Sarjana Teknik Informatika, vol. 2 , no. 1, Februari 2014.

F. Harrag dan E. El-Qawasmah, “Neural Network for Arabic Text Classification,” 2009 Second International Conference on the Applications of Digital Information and Web Technologies, pp. 778-783, 2009.

H. N. A. Hamed, S. M. Shamsuddin and N. Salim. , “Particle Swarm Optimization For Neural Network Learning Enchancement,” Jurnal Teknologi, pp. 13-26, 2008.

Kusrini, Sistem Pakar Teori dan Aplikasi, 1 penyunt., f. Suyantoro, Penyunt., Yogyakarta: Penerbit ANDI, 2006.

M. L. Zhang and Z. H. Zhou , “Multilabel neural networks with applications to functional genomics and text,” IEEE transactions on Knowledge and Data Engineering, pp. 1338-1351, 2006.

S. Nurcahyo, F. Nhita and Adiwijaya, “Rainfall Prediction in Kemayoran Jakarta Using Hybrid Genetic Algorithm (GA) and Partially Connected Feedforward Neural Network (PCFNN),” Information and Communication Technology (ICoICT), pp. (pp. 166-171), 2014.

T. Sutojo, E. Mulyanto and V. Suhartono, Kecerdasan Buatan, Yogyakarta: Andi, 2011.

E. A. Soepardi, N. Iskandar, J. Bashiruddin, R. D. Restuti and H. Utama, Telinga Hidung Tenggorok Kepala dan Leher edisi ketujuh, Jakarta: FK UI, 2012.

U. KEKEV?, “Real-Time Big Data Processing and Analytics: Concepts, Technologies, and Domains,” Computer Science, no. 2, pp. 111-123, 2022.

R. A. Pane, M. S. Mubarok, N. S. Huda and Adiwijaya, “A Multi-lable Classification on Topics of Quranic Verses in English Translation using Multinomial Naive Bayes,” 6th International Conference on Information and Communication Technology (ICoICT), 2018.

J. S. D. Raharjo, “Model Artificial Neural Network berbasis Particle Swarm Optimization untuk Prediksi Laju Inflasi,” Sistem Komputer, 2013.

N. H. Harani, “Segmentasi Pelanggan Produk Digital Service Indihome Menggunakan Algoritma K-Means Berbasis Python,” Jurnal Manajemen Informatika (JAMIKA), vol. 10, no. 2, pp. 133-146, 2020.

Yulia, “Penerapan Data Mining Clustering Dalam Mengelompokan Buku Dengan Metode K-Means,” Indonesian Journal of Computer Science, vol. 10, no. 1, 2021.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Clustering Loyalitas Pelanggan Menggunakan Algoritma K-Means Berbasis Web

Dimensions Badge

ARTICLE HISTORY


Published: 2024-07-31
Abstract View: 225 times
PDF Download: 154 times