Optimasi Model Machine Learning untuk Klasifikasi dan Prediksi Citra Menggunakan Algoritma Convolutional Neural Network
DOI:
https://doi.org/10.30865/resolusi.v4i5.1892Keywords:
Machine Learning; CNN; Optimize; Prediction; AccuracyAbstract
Convolutional Neural Networks (CNN) have become the dominant algorithm in image classification and prediction due to their ability to recognize complex visual patterns. However, to achieve optimal performance, CNN models require various optimization techniques. This study aims to explore and implement optimization techniques in training CNN models to enhance the accuracy and generalization capabilities of the model in image classification. The techniques implemented include learning rate scheduling, batch normalization, regularization with dropout and L2, data augmentation, and the use of transfer learning with pre-trained models such as VGG16. Additionally, early stopping methods and advanced optimization algorithms like Adam and RMSprop are applied to improve convergence and prevent overfitting. The results show that the combination of applied optimization techniques significantly improves the performance of CNN models. Analysis of the model training history visualization indicates a reduction in loss and an increase in accuracy, with slight indications of overfitting towards the end of training. These findings emphasize the importance of employing holistic optimization strategies in developing CNN models for image classification and prediction applications. However, in some experiments, the trained models still exhibited prediction errors. This can be attributed to factors such as overfitting or underfitting, data quality and quantity, data diversity, model architecture, and optimization methods. Therefore, further optimization is needed in data preparation, determination of optimization methods, and data cleaning.
Downloads
References
B. Mahesh, “Machine Learning Algorithms-A Review,” Int. J. Sci. Res., 2018, doi: 10.21275/ART20203995.
M. Arsal, B. Agus Wardijono, and D. Anggraini, “Jurnal Nasional Teknologi dan Sistem Informasi Face Recognition Untuk Akses Pegawai Bank Menggunakan Deep Learning Dengan Metode CNN”, doi: 10.25077/TEKNOSI.v6i1.2020.55-63.
E. Rasywir, R. Sinaga, Y. Pratama, U. Dinamika, and B. Jambi, “Analisis dan Implementasi Diagnosis Penyakit Sawit dengan Metode Convolutional Neural Network (CNN),” vol. 22, no. 2, 2020, doi: 10.31294/p.v21i2.
A. Peryanto, A. Yudhana, and D. R. Umar, “Rancang Bangun Klasifikasi Citra Dengan Teknologi Deep Learning Berbasis Metode Convolutional Neural Network,” Jurnal, vol. 8, pp. 2089–5615, 2019, Accessed: Jun. 01, 2024. [Online]. Available: https://www.mathworks.com/discovery/convolutional-neural-network.html
P.?: Randi et al., “ALGORITMA PEMBELAJARAN MESIN (Dasar, Teknik, dan Aplikasi)”, Accessed: May 23, 2024. [Online]. Available: www.buku.sonpedia.com
T. Shafira, “Implementasi Convolutional Neural Networks untuk Klasifikasi Citra Tomat Menggunakan Keras,” Mar. 2018, Accessed: May 23, 2024. [Online]. Available: https://dspace.uii.ac.id/handle/123456789/6345
I. N. U. R. ALAM, “METODE TRANSFER LEARNING PADA DEEP CONVOLUTIONAL NEURAL NETWORK (DCNN) UNTUK PENGENALAN EKSPRESI WAJAH”.
C. B. LIMBOING, “IMPLEMENTASI DEEP LEARNING UNTUK MENGANALISA BERBAGAI MACAM DAUN,” Sep. 2022.
S. Dolnicar et al., “PENGENALAN DAN KLASIFIKASI RAGAM KUE INDONESIA MENGGUNAKAN ARSITEKTUR RESNET50V2 PADA CONVOLUTIONAL NEURAL NETWORK (CNN),” Why We Need the Journal of Interactive Advertising, vol. 3, no. 1. p. 45, 1997. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0160738315000444%0Ahttp://www.sciencedirect.com/science/article/pii/S0160738315000444%250Ahttp://eprints.lancs.ac.uk/48376/%255Cnhttp://dx.doi.org/10.1002/zamm.19630430112%250Ahttp://www.sciencedirect.com/
Julien de la Bruère-Terreault, “Rock-Paper-Scissors Images.” https://www.kaggle.com/datasets/drgfreeman/rockpaperscissors (accessed May 23, 2024).
C. Shorten and T. M. Khoshgoftaar, “A survey on Image Data Augmentation for Deep Learning,” J. Big Data, vol. 6, no. 1, pp. 1–48, Dec. 2019, doi: 10.1186/S40537-019-0197-0/FIGURES/33.
J. Ghosh and S. Gupta, “ADAM Optimizer and CATEGORICAL CROSSENTROPY Loss Function-Based CNN Method for Diagnosing Colorectal Cancer,” Proc. Int. Conf. Comput. Intell. Sustain. Eng. Solut. CISES 2023, pp. 470–474, 2023, doi: 10.1109/CISES58720.2023.10183491.
U. N. Oktaviana, R. Hendrawan, A. D. K. Annas, and G. W. Wicaksono, “Klasifikasi Penyakit Padi berdasarkan Citra Daun Menggunakan Model Terlatih Resnet101,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 6, pp. 1216–1222, Dec. 2021, doi: 10.29207/RESTI.V5I6.3607.
S. A. Wulandari, M. Ma’ruf, A. R. Priyatno, N. Halimun, Z. M. Abdulah, and U. Amartiwi, “DjunkGo: A Mobile Application for Trash Classification with VGG16 Algorithm,” GMPI Conf. Ser., vol. 2, pp. 67–72, Jan. 2023, doi: 10.53889/GMPICS.V2.175.
S. Poudel and P. Poudyal, “Classification of Waste Materials using CNN Based on Transfer Learning,” ACM Int. Conf. Proceeding Ser., pp. 29–33, Dec. 2022, doi: 10.1145/3574318.3574345.
A. Darugutni and H. Marcos, “KLASIFIKASI PERMAINAN BATU KERTAS GUNTING MENGGUNAKAN ALGORITMA CONVOLUTION NEURAL NETWORK (CNN),” Method. J. Tek. Inform. dan Sist. Inf., vol. 9, no. 1, pp. 1–3, Mar. 2023, doi: 10.47065/bits.v3i3.1143.
Fitriani, “KLASIFIKASI JENIS BUNGA DENGAN MENGGUNAKAN CONVOLUTIONAL NEURAL NETWORK (CNN),” TEKNIMEDIA, vol. 2, no. 2, pp. 64–68, 2021.
M. Malik et al., “Waste Classification for Sustainable Development Using Image Recognition with Deep Learning Neural Network Models,” Sustain., vol. 14, no. 12, Jun. 2022, doi: 10.3390/SU14127222.
A. Ibnul Rasidi, Y. A. H. Pasaribu, A. Ziqri, and F. D. Adhinata, “Klasifikasi Sampah Organik dan Non-Organik Menggunakan Convolutional Neural Network,” J. Tek. Inform. dan Sist. Inf., vol. 8, no. 1, Apr. 2022, doi: 10.28932/JUTISI.V8I1.4314.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Optimasi Model Machine Learning untuk Klasifikasi dan Prediksi Citra Menggunakan Algoritma Convolutional Neural Network
ARTICLE HISTORY
Issue
Section
Copyright (c) 2024 Eko Setia Budi, Arifa Nofriyaldi Chan, Prilly Priscillia Alda, Muh. Arif Fauzi Idris

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).














