Forecasting Penjualan Produk Sembako Menggunakan Metode Triple Exponential Smoothing


Authors

  • Asep Toyib Hidayat Universitas Bina Insan, Lubuklinggau, Indonesia
  • Dwi Puspita Sari Universitas Bina Insan, Lubuklinggau, Indonesia
  • Pebrinda Andriani Universitas Bina Insan, Lubuklinggau, Indonesia

DOI:

https://doi.org/10.30865/resolusi.v4i4.1754

Keywords:

Forecasting; Basic Necessities; Smoothing Techniques

Abstract

Forecasting is a very important factor in the decision making process. The forecasts made are generally based on the past which is then analyzed using certain methods. Past data is collected, researched, analyzed and linked to the passage of time. In this research, the Triple Exponential Smoothing Method is used, which is a forecasting method that is commonly used because it has simple concepts and calculations. One of the reasons for using the periodic series data smoothing method is because this method can be done with two approaches, namely the smoothing method and the exponential smoothing method. The results obtained from this research. Selecting the right ?, ?, ? values ??can produce ideal MAPE values. It is proven that to obtain ideal values ??for ?, ?, ? using the brute force method, the values ??obtained are ? = 0.1, ? = 0, 2, and ? = 0.9, we get a MAPE value of 1.92%, where previously the resulting MAPE was 7.54%.

Downloads

Download data is not yet available.

References

M. Priantika, “STRATEGI PROMOSI DALAM MENINGKATKAN PENJUALAN PRODUK UNGGUL “NPK PUSRI“ DI PT PUPUK SRIWIDJAJA PALEMBANG,” vol. 3, no. 5, pp. 1573–1586, 2024.

Y. Riadi Silitonga, “Sistem Pendeteksi Berita Hoax di Media Sosial dengan Teknik Data Mining Scikit Learn,” J. Ilmu Komput., vol. 4, p. 173, 2019, [Online]. Available: www.beritasatu.com,

P. P. Krisma, Alviani Azhari, Muhammad Widagdo, “Perbandingan Metode Double Exponential Smoothing Dan Triple Exponential Smoothing Dalam Parameter Tingkat Error Mean Absolute Percentage Error (MAPE) dan Means Absolute Deviation (MAD) Alviani Krisma Putut Pamilih Widagdo Kata kunci-forecasting, Double Ex,” Pros. Semin. Nas. Ilmu Komput. dan Teknol. Inf., vol. 4, no. 2, pp. 81–87, 2019.

F. Andrian, S. Martha, and S. Rahmayuda, “Sistem Peramalan Jumlah Mahasiswa Baru Menggunakan Metode Triple Exponential Smoothing,” J. Komput. Dan Apl., vol. 08, no. 01, pp. 112–121, 2020.

M. H. Fakhriza and K. Umam, “Analisis Produk Terlaris Menggunakan Metode K-Means Clustering Pada “Pt.Sukanda Djaya,” JIKA (Jurnal Inform., vol. 5, no. 1, p. 8, 2021, doi: 10.31000/jika.v5i1.3236.

A. Putri, Ratih Dewi, “Prediksi Penjualan Produk Elektronik Yang Terlaris Pada Cv. Istana Komputer Palembang Menggunakan Algoritma Regresi Linear Sederhana,” J. Mantik, vol. 6, no. 2, pp. 2254–2263, 2022, [Online]. Available: http://iocscience.org/ejournal/index.php/mantik/article/view/2798%0Ahttps://iocscience.org/ejournal/index.php/mantik/article/download/2798/2203

R. I. Ramoza, S. K. Gusti, L. Handayani, and S. Ramadhani, “Perbandingan Triple Exponential Smoothing dan Fuzzy Time Series untuk Memprediksi Netto TBS Kelapa Sawit,” J. Comput. Syst. Informatics, vol. 4, no. 3, pp. 614–624, 2023, doi: 10.47065/josyc.v4i3.3433.

M. Yoka Fathoni, S. Wijayanto, J. DI Panjaitan No, K. Purwokerto Selatan, K. Banyumas, and J. Tengah, “Forecasting Penjualan Gas LPG di Toko Sembako Menggunakan Metode Fuzzy Time Series,” JUPITER (Jurnal Penelit. Ilmu dan Teknol. Komputer), vol. 13, no. 2, pp. 87–96, 2021, [Online]. Available: https://jurnal.polsri.ac.id/index.php/jupiter/article/view/3541

R. Y. Hayuningtyas, “Implementasi Metode Triple Exponential Smoothing Untuk Prediksi Penjualan Alat Kesehatan,” EVOLUSI J. Sains dan Manaj., vol. 8, no. 1, pp. 29–35, 2020, doi: 10.31294/evolusi.v8i1.7404.

N. D. Maulana, B. D. Setiawan, and C. Dewi, “Implementasi Metode Support Vector Regression (SVR) Dalam Peramalan Penjualan Roti (Studi Kasus?: Harum Bakery),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 3, pp. 2986–2995, 2019.

S. N. Rahmadhani, L. Logiandani, R. Z. Ramadhan, R. N. Sofia Amriza, and M. Y. Fathoni, “Analisis Forecasting Penjualan Gula Merah di Jatilawang Menggunakan Metode Weighted Moving Average,” J. Sisfokom (Sistem Inf. dan Komputer), vol. 11, no. 3, pp. 381–386, 2022, doi: 10.32736/sisfokom.v11i3.1433.

R. Maulidya, R. Rizaldi, and E. Saputra, “Metode Least Square Seabagai Prediksi Penjualan Sembako di Toko Suryono,” J-Com (Journal Comput., vol. 1, no. 3, pp. 213–218, 2021, doi: 10.33330/j-com.v1i3.1388.

W. Hadikristanto and A. Setyaningsih, “Penerapan Algoritma Naive Bayes Untuk Menentukan Klasifikasi Produk Terlaris Pada Penjualan Pulsa,” SIGMA - J. Teknol. Pelita Bangsa, vol. 11, no. 2, pp. 115–122, 2020.

N. Hudaningsih, S. Firda Utami, and W. A. Abdul Jabbar, “Perbandingan Peramalan Penjualan Produk Aknil Pt.Sunthi Sepurimengguanakan Metode Single Moving Average Dan Single Exponential Smooting,” J. Inform. Teknol. dan Sains, vol. 2, no. 1, pp. 15–22, 2020, doi: 10.51401/jinteks.v2i1.554.

T. A. Tistiawan and T. D. Andini, “Pemanfaatan Metode Triple Exponential Smoothing Dalam Peramalan Penjualan Pada Pt.Dinamika Daya Segara Malang,” J. Ilm. Teknol. Inf. Asia, vol. 13, no. 1, p. 69, 2019, doi: 10.32815/jitika.v13i1.345.

K. Kadarsih and S. Andrianto, “Penerapan Metode Clustering K-Means Dalam Pengelompokan Penerima Kwh Metergratis Dengan Bahasa Pemprograman Python,” JTIM J. Tek. Inform. Mahakarya, vol. 03, no. 2, pp. 37–44, 2022.

A. Hendrawan, H. Sucahyowati, K. Cahyandi, Indriyani, and A. Rayendra, “Pengaruh Marketing Digital Terhadap Kinerja Penjualan Produk Umkm Asti Gauri Di Kecamatan Bantarsari Cilacap,” J. Adm. dan Kesekretarisan, vol. 4, no. 1, pp. 50–6q, 2019.

A. I. Tanggraeni and M. N. N. Sitokdana, “Analisis Sentimen Aplikasi E-Government pada Google Play Menggunakan Algoritma Naïve Bayes,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 9, no. 2, pp. 785–795, 2022, doi: 10.35957/jatisi.v9i2.1835.

M. K. Khoirul Insan, U. Hayati, and O. Nurdiawan, “Analisis Sentimen Aplikasi Brimo Pada Ulasan Pengguna Di Google Play Menggunakan Algoritma Naive Bayes,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 1, pp. 478–483, 2023, doi: 10.36040/jati.v7i1.6373.

S. A. Aaputra, Didi Rosiyadi, Windu Gata, and Syepry Maulana Husain, “Sentiment Analysis Analysis of E-Wallet Sentiments on Google Play Using the Naive Bayes Algorithm Based on Particle Swarm Optimization,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 3, no. 3, pp. 377–382, 2019, doi: 10.29207/resti.v3i3.1118.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Forecasting Penjualan Produk Sembako Menggunakan Metode Triple Exponential Smoothing

Dimensions Badge

ARTICLE HISTORY


Published: 2024-03-31
Abstract View: 1105 times
PDF Download: 875 times