Penerapan Data Mining Untuk Prediksi Penjualan Produk Pangan Hewan Menggunakan Metode K-Nearest Neighbor


Authors

  • Rara Iriane Universitas Amikom Purwokerto, Banyumas, Indonesia
  • Nurfaizah Universitas Amikom Purwokerto, Banyumas, Indonesia

DOI:

https://doi.org/10.30865/klik.v3i5.683

Keywords:

K-Nearest Neighbor; Euclidean Distance; Animal Feed

Abstract

Sales are buying and selling transactions for profit, in sales there is sales data or information about sales. Sales data is currently stored very much, it's just that it hasn't been used to help the sales process, including to predict the types of feed that are the most in-demand and not in demand. This can be used by the owner as an ingredient for making decisions in stocking food products. This research was conducted using animal feed sales data which aims to process information or data to become the basis for making conclusions for business owners in predicting sales using the data mining method, namely K-Nearest Neighbor. The KNN method itself has several advantages, one of which is that if the training data is large, the data will be more effective and resilient than noisy. This study uses 208 datasets with a comparison of the use of training data and testing data of 80:20. The results of this study resulted in an accuracy of 80.4% for classifying product categories with Euclidean Distance and produced predictions for the best-selling product that was the most sold, namely Whiskas 80gr Junior Tuna with predictions of 6963 sold. Meanwhile, the product that was predicted to sell the least was Whiskas Adult 1.2 kg with predictions sold as many as 8

Downloads

Download data is not yet available.

References

I. Purwanti and Y. Farida, “Analisis Strategi Penjualan Stok Spare Part di PT. Fajar Mas Murni Surabaya,” J. Mat. “MANTIK,” vol. 4, no. 2, pp. 100–109, 2018, doi: 10.15642/mantik.2018.4.2.100-109.

E. Prasetyowati, DATA MINING Pengelompokan Data untuk Informasi dan Evaluasi. Duta Media Publishing, 2017.

B. Hardiyanto and F. Rozi, “Prediksi Penjualan Sepatu Menggunakan Metode K-Nearest Neighbor,” JOEICT(Jurnal Educ. Inf. Commun. Technol., vol. 04, no. 02, pp. 13–18, 2020.

R. I. Muhammad, E. R. Nainggolan, J. L. Putra, S. Sidik, S. Susafa’ati, and U. Radiyah, “Implementasi Metode K-Nearest Neighbor Untuk Prediksi Penjualan Kemasan Skincare Pada Pt. Universal Jaya Perkasa,” Technologic, vol. 12, no. 2, 2021, doi: 10.52453/t.v12i2.384.

D. Handoko, H. S. Tambunan, and J. T. Hardinata, “Analisis Penjualan Produk Paket Kuota Internet Dengan Metode K-Nearest Neighbor,” Jurasik (Jurnal Ris. Sist. Inf. dan Tek. Inform., vol. 6, no. 1, p. 111, 2021, doi: 10.30645/jurasik.v6i1.275.

I. Rasyid, I. Saputra, R. K. S. Suryanegara, M. R. A. Yudianto, and Maimunah, “Classification of Tangerines on Fruit Ripening Levels Using K-Nearest Neighbor Algorithm,” Proceeding 15th Univ. Res. Colloq. 2022 Mhs. (Student Pap. Present. B, pp. 403–409, 2022, [Online]. Available: http://repository.urecol.org/index.php/proceeding/article/view/2165%0Ahttp://repository.urecol.org/index.php/proceeding/article/download/2165/2128

S. Novita, P. Harsani, and A. Qur’ania, “Penerapan K-Nearest Neighbor (KNN) untuk Klasifikasi Anggrek Berdasarkan Karakter Morfologi Daun dan Bunga,” Komputasi, vol. 15, no. 1, pp. 118–125, 2018.

R. Sari, “Analisis Sentimen Pada Review Objek Wisata Dunia Fantasi Menggunakan Algoritma K-Nearest Neighbor (K-Nn),” EVOLUSI J. Sains dan Manaj., vol. 8, no. 1, pp. 10–17, 2020, doi: 10.31294/evolusi.v8i1.7371.

M. Reza Noviansyah, T. Rismawan, D. Marisa Midyanti, J. Sistem Komputer, and F. H. MIPA Universitas Tanjungpura Jl Hadari Nawawi, “Penerapan Data Mining Menggunakan Metode K-Nearest Neighbor Untuk Klasifikasi Indeks Cuaca Kebakaran Berdasarkan Data Aws (Automatic Weather Station) (Studi Kasus: Kabupaten Kubu Raya),” J. Coding, Sist. Komput. Untan, vol. 06, no. 2, pp. 48–56, 2018.

R. A. Arnomo, W. L. Y. Saptomo, and P. Harsadi, “Implementation of K-Nearest Neighbor Algorithm for Water Quality Identification (Case Study: PDAM Kota Surakarta),” J. Teknol. Inf. dan Komun., vol. 6, no. 1, pp. 1–5, 2018, [Online]. Available: https://p3m.sinus.ac.id/jurnal/index.php/TIKomSiN/article/view/345

S. R. Cholil, T. Handayani, R. Prathivi, and T. Ardianita, “Implementasi Algoritma Klasifikasi K-Nearest Neighbor (KNN) Untuk Klasifikasi Seleksi Penerima Beasiswa,” IJCIT (Indonesian J. Comput. Inf. Technol., vol. 6, no. 2, pp. 118–127, 2021.

P. Putra, A. M. H Pardede, and S. Syahputra, “Analisis Metode K-Nearest Neighbour (Knn) Dalam Klasifikasi Data Iris Bunga,” J. Tek. Inform. Kaputama, vol. 6, no. 1, pp. 297–305, 2022.

L. Farokhah and P. Korespondensi, “Implementasi K-Nearest Neighbor Untuk Klasifikasi Bunga Dengan Ekstraksi Fitur Warna Rgb Implementation of K-Nearest Neighbor for Flower Classification With Extraction of Rgb Color Features,” J. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 6, pp. 1129–1136, 2020, doi: 10.25126/jtiik.202072608.

N. Hidayati and A. Hermawan, “K-Nearest Neighbor (K-NN) algorithm with Euclidean and Manhattan in classification of student graduation,” J. Eng. Appl. Technol., vol. 2, no. 2, pp. 86–91, 2021, doi: 10.21831/jeatech.v2i2.42777.

A. M. S. I. Dewi and I. B. G. Dwidasmara, “Implementation Of The K-Nearest Neighbor (KNN) Algorithm For Classification Of Obesity Levels,” JELIKU (Jurnal Elektron. Ilmu Komput. Udayana), vol. 9, no. 2, p. 277, 2020, doi: 10.24843/jlk.2020.v09.i02.p15.

Y. F. Safri, R. Arifudin, and M. A. Muslim, “K-Nearest Neighbor and Naive Bayes Classifier Algorithm in Determining The Classification of Healthy Card Indonesia Giving to The Poor,” Sci. J. Informatics, vol. 5, no. 1, p. 18, 2018, doi: 10.15294/sji.v5i1.12057.

Yahya and W. P. Hidayanti, “Penerapan Algoritma K-Nearest Neighbor Untuk Klasifikasi Efektivitas Penjualan Vape ( Rokok El ektrik ) pada ‘ Lombok Vape On ’ Pendahuluan dihasilkan tidak stabil dan tidak mampu diprediksi Dari penelitian yang dilakukan , berusaha untuk mengklasifikasik,” vol. 3, no. 2, 2020.

N. E. Pratiwi, L. Suryadi, N. E. Pratiwi, F. Ardhy, and P. Riswanto, “JUSIM ( Jurnal Sistem Informasi Musirawas ) PENERAPAN DATA MINING PREDIKSI PENJUALAN MEBEL TERLARIS MENGGUNAKAN METODE K-NEAREST NEIGHBOR ( K-NN ) ( STUDI KASUS?: TOKO ZERITA MEUBEL ) JUSIM ( Jurnal Sistem Informasi Musirawas ) Lusi Suryadi , Ngajiyano , ,” vol. 7, no. 2, pp. 174–184, 2022.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Penerapan Data Mining Untuk Prediksi Penjualan Produk Pangan Hewan Menggunakan Metode K-Nearest Neighbor

Dimensions Badge

ARTICLE HISTORY


Published: 2023-04-30
Abstract View: 1286 times
PDF Download: 1211 times

Issue

Section

Articles