Penerapan Data Mining Untuk Pengelompokan Siswa Berdasarkan Nilai Akademik dengan Algoritma K-Means
DOI:
https://doi.org/10.30865/klik.v3i3.627Keywords:
Datamining; K-means Algorithm; K-Means Clustering; Rapid MinerAbstract
The data mining process by applying the K-Means algorithm is carried out to group data into one or more groups, where data that has representative similarities is grouped into one group and data that has differences is included in another group. Grouping student data is done to facilitate schools in facilitating students based on differences in their ability to learn and participate in learning which consists of groups or classes of superior students, medium and low groups. The data application used for the calculation process is student data based on a centralized assessment in presenting reports on student learning outcomes using the results of report cards, namely the rapid miner. This assessment forms the basis of the attributes used in the calculation process to determine superior, medium and low class students. The purpose of this study is to manage centralized assessment data in presenting reports on student learning outcomes and grouping students in superior classes by implementing the K-means algorithm and conducting tests using the rapidminer application. So that student data can be managed and grouped effectively and efficiently
Downloads
References
Yuli Mardi, “Data Mining?: Klasifikasi Menggunakan Algoritma C4 . 5 Data mining merupakan bagian dari tahapan proses Knowledge Discovery in Database ( KDD ) . Jurnal Edik Informatika,” J. Edik Inform., vol. 2, no. 2, pp. 213–219, 2019.
P. M. S. Tarigan, J. T. Hardinata, H. Qurniawan, M. Safii, and R. Winanjaya, “Implementasi Data Mining Menggunakan Algoritma Apriori Dalam Menentukan Persediaan Barang,” J. Janitra Inform. dan Sist. Inf., vol. 2, no. 1, pp. 9–19, 2022, doi: 10.25008/janitra.v2i1.142.
P. N. Harahap and S. Sulindawaty, “Implementasi Data Mining Dalam Memprediksi Transaksi Penjualan Menggunakan Algoritma Apriori (Studi Kasus PT.Arma Anugerah Abadi Cabang Sei Rampah),” Matics, vol. 11, no. 2, p. 46, 2020, doi: 10.18860/mat.v11i2.7821.
A. Asroni and R. Adrian, “Penerapan Metode K-Means Untuk Clustering Mahasiswa Berdasarkan Nilai Akademik Dengan Weka Interface Studi Kasus Pada Jurusan Teknik Informatika UMM Magelang,” Semesta Tek., vol. 18, no. 1, pp. 76–82, 2016, doi: 10.18196/st.v18i1.708.
Y. A. Wijaya et al., “K-Means Di Sekolah Menengah Kejuruan Wahidin Kota Cirebon,” vol. 6, no. 2, pp. 552–559, 2022.
W. Sirait, S. Defit, and G. W. Nurcahyo, “Algoritma K-Means Untuk Klasterisasi Tugas Akhir Mahasiswa Berdasarkan Keahlian,” J. Sistim Inf. dan Teknol., vol. 1, no. 3, pp. 25–30, 2019, doi: 10.35134/jsisfotek.v1i3.6.
W. Dhuhita, “Clustering Menggunakan Metode K-Mean Untuk Menentukan Status Gizi Balita,” J. Inform. Darmajaya, vol. 15, no. 2, pp. 160–174, 2015.
R. K. Dinata, S. Safwandi, N. Hasdyna, and N. Azizah, “Analisis K-Means Clustering pada Data Sepeda Motor,” INFORMAL Informatics J., vol. 5, no. 1, p. 10, 2020, doi: 10.19184/isj.v5i1.17071.
B. Harahap, “Penerapan Algoritma K-Means Untuk Menentukan Bahan Bangunan Laris (Studi Kasus Pada UD. Toko Bangunan YD Indarung),” Reg. Dev. Ind. Heal. Sci. Technol. Art Life, pp. 394–403, 2019, [Online]. Available: https://ptki.ac.id/jurnal/index.php/readystar/article/view/82
Y. R. Sari, A. Sudewa, D. A. Lestari, and T. I. Jaya, “Penerapan Algoritma K-Means Untuk Clustering Data Kemiskinan Provinsi Banten Menggunakan Rapidminer,” CESS (Journal Comput. Eng. Syst. Sci., vol. 5, no. 2, p. 192, 2020, doi: 10.24114/cess.v5i2.18519.
M. N. Sutoyo, “Algoritma K-Means,” no. 1, pp. 1–7, 2019.
I. Sumadikarta and E. Abeiza, “PENERAPAN ALGORITMA K-MEANS PADA DATA MINING UNTUK MEMILIH PRODUK DAN PELANGGAN POTENSIAL (Studi Kasus?: PT Mega Arvia Utama),” J. Satya Inform., no. 1, pp. 1–12, 2014.
Z. Zulham and B. S. Hasugian, “Pengelompokan Siswa Dalam Menentukan Penerima Beasiswa Berdasarkan Prestasi Akademik Dengan Algoritma K-Means,” War. Dharmawangsa, vol. 16, no. 3, pp. 231–241, 2022, doi: 10.46576/wdw.v16i3.2220.
S. N. Br Sembiring, H. Winata, and S. Kusnasari, “Pengelompokan Prestasi Siswa Menggunakan Algoritma K-Means,” J. Sist. Inf. Triguna Dharma (JURSI TGD), vol. 1, no. 1, p. 31, 2022, doi: 10.53513/jursi.v1i1.4784.
F. Rini, N. Kahar, and Juliana, “Penerapan Algoritma K-Means Pada Pengelompokan Data Siswa Baru Berdasarkan Jurusan Di Smk Negeri 1 Kota Jambi Berbasis Web,” Semin. Nas. APTIKOM, pp. 94–99, 2016.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Penerapan Data Mining Untuk Pengelompokan Siswa Berdasarkan Nilai Akademik dengan Algoritma K-Means
ARTICLE HISTORY
Issue
Section
Copyright (c) 2023 Penda Sudarto Hasugian, Jijon Raphita Sagala

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).