Penerapan Data Mining Untuk Pengelompokan Siswa Berdasarkan Nilai Akademik dengan Algoritma K-Means


Authors

  • Penda Sudarto Hasugian STMIK Pelita Nusantara, Medan, Indonesia
  • Jijon Raphita Sagala STMIK Pelita Nusantara, Medan, Indonesia

DOI:

https://doi.org/10.30865/klik.v3i3.627

Keywords:

Datamining; K-means Algorithm; K-Means Clustering; Rapid Miner

Abstract

The data mining process by applying the K-Means algorithm is carried out to group data into one or more groups, where data that has representative similarities is grouped into one group and data that has differences is included in another group. Grouping student data is done to facilitate schools in facilitating students based on differences in their ability to learn and participate in learning which consists of groups or classes of superior students, medium and low groups. The data application used for the calculation process is student data based on a centralized assessment in presenting reports on student learning outcomes using the results of report cards, namely the rapid miner. This assessment forms the basis of the attributes used in the calculation process to determine superior, medium and low class students. The purpose of this study is to manage centralized assessment data in presenting reports on student learning outcomes and grouping students in superior classes by implementing the K-means algorithm and conducting tests using the rapidminer application. So that student data can be managed and grouped effectively and efficiently

Downloads

Download data is not yet available.

References

Yuli Mardi, “Data Mining?: Klasifikasi Menggunakan Algoritma C4 . 5 Data mining merupakan bagian dari tahapan proses Knowledge Discovery in Database ( KDD ) . Jurnal Edik Informatika,” J. Edik Inform., vol. 2, no. 2, pp. 213–219, 2019.

P. M. S. Tarigan, J. T. Hardinata, H. Qurniawan, M. Safii, and R. Winanjaya, “Implementasi Data Mining Menggunakan Algoritma Apriori Dalam Menentukan Persediaan Barang,” J. Janitra Inform. dan Sist. Inf., vol. 2, no. 1, pp. 9–19, 2022, doi: 10.25008/janitra.v2i1.142.

P. N. Harahap and S. Sulindawaty, “Implementasi Data Mining Dalam Memprediksi Transaksi Penjualan Menggunakan Algoritma Apriori (Studi Kasus PT.Arma Anugerah Abadi Cabang Sei Rampah),” Matics, vol. 11, no. 2, p. 46, 2020, doi: 10.18860/mat.v11i2.7821.

A. Asroni and R. Adrian, “Penerapan Metode K-Means Untuk Clustering Mahasiswa Berdasarkan Nilai Akademik Dengan Weka Interface Studi Kasus Pada Jurusan Teknik Informatika UMM Magelang,” Semesta Tek., vol. 18, no. 1, pp. 76–82, 2016, doi: 10.18196/st.v18i1.708.

Y. A. Wijaya et al., “K-Means Di Sekolah Menengah Kejuruan Wahidin Kota Cirebon,” vol. 6, no. 2, pp. 552–559, 2022.

W. Sirait, S. Defit, and G. W. Nurcahyo, “Algoritma K-Means Untuk Klasterisasi Tugas Akhir Mahasiswa Berdasarkan Keahlian,” J. Sistim Inf. dan Teknol., vol. 1, no. 3, pp. 25–30, 2019, doi: 10.35134/jsisfotek.v1i3.6.

W. Dhuhita, “Clustering Menggunakan Metode K-Mean Untuk Menentukan Status Gizi Balita,” J. Inform. Darmajaya, vol. 15, no. 2, pp. 160–174, 2015.

R. K. Dinata, S. Safwandi, N. Hasdyna, and N. Azizah, “Analisis K-Means Clustering pada Data Sepeda Motor,” INFORMAL Informatics J., vol. 5, no. 1, p. 10, 2020, doi: 10.19184/isj.v5i1.17071.

B. Harahap, “Penerapan Algoritma K-Means Untuk Menentukan Bahan Bangunan Laris (Studi Kasus Pada UD. Toko Bangunan YD Indarung),” Reg. Dev. Ind. Heal. Sci. Technol. Art Life, pp. 394–403, 2019, [Online]. Available: https://ptki.ac.id/jurnal/index.php/readystar/article/view/82

Y. R. Sari, A. Sudewa, D. A. Lestari, and T. I. Jaya, “Penerapan Algoritma K-Means Untuk Clustering Data Kemiskinan Provinsi Banten Menggunakan Rapidminer,” CESS (Journal Comput. Eng. Syst. Sci., vol. 5, no. 2, p. 192, 2020, doi: 10.24114/cess.v5i2.18519.

M. N. Sutoyo, “Algoritma K-Means,” no. 1, pp. 1–7, 2019.

I. Sumadikarta and E. Abeiza, “PENERAPAN ALGORITMA K-MEANS PADA DATA MINING UNTUK MEMILIH PRODUK DAN PELANGGAN POTENSIAL (Studi Kasus?: PT Mega Arvia Utama),” J. Satya Inform., no. 1, pp. 1–12, 2014.

Z. Zulham and B. S. Hasugian, “Pengelompokan Siswa Dalam Menentukan Penerima Beasiswa Berdasarkan Prestasi Akademik Dengan Algoritma K-Means,” War. Dharmawangsa, vol. 16, no. 3, pp. 231–241, 2022, doi: 10.46576/wdw.v16i3.2220.

S. N. Br Sembiring, H. Winata, and S. Kusnasari, “Pengelompokan Prestasi Siswa Menggunakan Algoritma K-Means,” J. Sist. Inf. Triguna Dharma (JURSI TGD), vol. 1, no. 1, p. 31, 2022, doi: 10.53513/jursi.v1i1.4784.

F. Rini, N. Kahar, and Juliana, “Penerapan Algoritma K-Means Pada Pengelompokan Data Siswa Baru Berdasarkan Jurusan Di Smk Negeri 1 Kota Jambi Berbasis Web,” Semin. Nas. APTIKOM, pp. 94–99, 2016.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Penerapan Data Mining Untuk Pengelompokan Siswa Berdasarkan Nilai Akademik dengan Algoritma K-Means

Dimensions Badge

ARTICLE HISTORY


Published: 2022-12-30
Abstract View: 899 times
PDF Download: 1614 times