Implementasi Euclidean Distance dan Segmentasi K-Means Clustering Pada Identifikasi Citra Jenis Ikan Nila


Authors

  • Rini Nuraini Universitas Nasional, Indonesia

DOI:

https://doi.org/10.30865/klik.v3i1.551

Keywords:

Euclidean Distance; Shape Feature Extraction; Texture Feature Extraction; K-Mean Clustering; Tilapia Fish

Abstract

Tilapia is one of the favorite fish for consumption because it contains high nutrition at a relatively low price. This is what makes fish cultivators in Indonesia choose tilapia for cultivation. Tilapia has several varieties that have different characteristics, thus affecting the way of handling and cultivating these fish. For this reason, tilapia cultivators need to have knowledge about the types of tilapias so they can cultivate based on the characteristics of these fish species. This study aims to implement the Euclidean Distance algorithm and image segmentation with K-Mean Clustering on image identification of tilapia species based on their shape and texture characteristics. The K-Mean Clustering algorithm is used to separate the foreground and background in the image. Furthermore, the object's characteristics will be extracted based on its shape and texture characteristics. Furthermore, the identification process is carried out using the Euclidean Distance algorithm which will look for similarity values between two or more by calculating the value of the distance from Euclidean, to determine whether the object is included in which class based on the closeness of the values obtained. Based on the test results, the accuracy value reached 84.3%. These results show that the developed model can identify tilapia species well

Downloads

Download data is not yet available.

References

S. Sadya, “Produksi Ikan Nila Indonesia Sebanyak 1,35 Juta Ton pada 2021,” Dataindonesia.id, 2022. https://dataindonesia.id/sektor-riil/detail/produksi-ikan-nila-indonesia-sebanyak-135-juta-ton-pada-2021

A. Rahmawati and M. Dailami, Budidaya Ikan Nila Terpadu. Malang: Penerbit Brainy Bee, 2021.

S. Surianti, Buku Ajar: Dasar-Dasar Akuakultur (Budidaya Perikanan). Bandung: Media Sains Indonesia, 2022.

R. I. Borman, F. Rossi, Y. Jusman, A. A. A. Rahni, S. D. Putra, and A. Herdiansah, “Identification of Herbal Leaf Types Based on Their Image Using First Order Feature Extraction and Multiclass SVM Algorithm,” in International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS), 2021, pp. 12–17.

R. I. Borman, R. Napianto, N. Nugroho, D. Pasha, Y. Rahmanto, and Y. E. P. Yudoutomo, “Implementation of PCA and KNN Algorithms in the Classification of Indonesian Medicinal Plants,” in ICOMITEE 2021, 2021, pp. 46–50.

S. Santosa, S. Sudin, and N. S. Kamala, “Identifikasi Tingkat Kesegaran Ikan Tuna Melalui Citra Mata Menggunakan Metode K-Nearesh Neighbor (KNN),” J. PRODUKTIF, vol. 6, no. 1, pp. 517–524, 2022.

Y. Yuliska and K. U. Syaliman, “Peningkatan Akurasi K-Nearest Neighbor Pada Data Index Standar Pencemaran Udara Kota Pekanbaru,” IT J. Res. Dev., vol. 5, no. 1, pp. 11–18, 2020.

P. P. Winangun, I. M. O. Widyantara, and R. S. Hartati, “Pendekatan Diagnostik Berbasis Extreme Learning Machine dengan Kernel Linear untuk Mengklasifikasi Kelainan Paru-Paru,” Maj. Ilm. Teknol. Elektro, vol. 19, no. 1, p. 83, 2020, doi: 10.24843/mite.2020.v19i01.p12.

R. Nuraini, “Identification of Freshwater Fish Types Using Linear Discriminant Analysis (LDA) Algorithm,” IJICS (International J. Informatics Comput. Sci., vol. 6, no. 3, pp. 147–154, 2022, doi: 10.30865/ijics.v6i3.5565.

W. Astuti and A. Adiwijaya, “Principal Component Analysis Sebagai Ekstraksi Fitur Data Microarray Untuk Deteksi Kanker Berbasis Linear Discriminant Analysis,” J. Media Inform. Budidarma, vol. 3, no. 2, p. 72, 2019, doi: 10.30865/mib.v3i2.1161.

A. D. W. M. Sidik et al., “Menerapkan K-Means Clustering untuk Segmentasi Gambar Database Berwarna,” Fidel. J. Tek. Elektro, vol. 2, no. 3, pp. 57–61, 2020.

A. Yudhana, S. Sunardi, and A. J. S. Hartanta, “Algoritma K-NN Dengan Euclidean Distance Untuk Prediksi Hasil Penggergajian Kayu Sengon,” Transmisi, vol. 22, no. 4, pp. 123–129, 2020, doi: 10.14710/transmisi.22.4.123-129.

R. Rizaldi, A. Kurniawati, and C. V. Angkoso, “Implementasi Metode Euclidean Distance untuk Rekomendasi Ukuran Pakaian pada Aplikasi Ruang Ganti Virtual,” J. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 2, p. 129, 2018, doi: 10.25126/jtiik.201852592.

M. Jannah and N. Humaira, “Implementasi Metode Euclidean Distance Untuk Ekstraksi Fitur Jarak Pada Citra Skeleton,” J. Ilm. Inform. Komput., vol. 24, no. 2, pp. 134–139, 2019, doi: 10.35760/ik.2019.v24i2.2368.

I. H. Qasim and A. B. W. Putra, “Penggunaan Metode Euclidean Distance, Coefficient Correlation dan Center of Gravity Untuk Pembangunan Prototype Citra Tanda Tangan,” in PROSIDING SNSebatik 2017 (Seminar Nasional Serba Informatika 2017), 2017, vol. 1, no. 1, pp. 52–58.

N. Y. Arifin et al., Analisa Perancangan Sistem Informasi. Batam: Cendikia Mulia Mandiri, 2021.

A. Mulyanto, R. I. Borman, P. Prasetyawana, and A. Sumarudin, “2D Lidar and Camera Fusion for Object Detection and Object Distance Measurement of ADAS Using Robotic Operating System ( ROS ),” JOIV Int. J. Informatics Vis., vol. 4, no. 4, pp. 231–236, 2020.

S. Hapsari, “7 Jenis Ikan Nila yang Unggul dan Paling Berkualitas untuk Budidaya,” Mediani.com, 2021. https://mediaini.com/branding-promosi/2021/02/09/36924/7-jenis-ikan-nila-yang-unggul-dan-paling-berkualitas/

A. S. Sinaga and T. Informatika, “Segmentasi Ruang Warna L * a * b,” J. Mantik Penusa, vol. 3, no. 1, pp. 43–46, 2019.

R. I. Borman, Y. Fernando, and Y. E. P. Yudoutomo, “Identification of Vehicle Types Using Learning Vector Quantization Algorithm with Morphological Features,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 6, no. 2, pp. 339–345, 2022.

E. Fernando Ade Pratama, K. Khairil, and J. Jumadi, “Implementasi Metode K-Means Clustering Pada Segmentasi Citra Digital,” J. Media Infotama, vol. 18, no. 2, pp. 291–301, 2022.

F. T. Anggraeny, M. S. Munir, and U. W. Atmojo, “Segmentasi K-Means Clustering Pada Citra Warna Daun Tunggal Menggunakan Model Warna L*a*b,” SCAN - J. Teknol. Inf. dan Komun., vol. 14, no. 2, pp. 38–44, 2019, doi: 10.33005/scan.v14i2.1485.

I. Ahmad, Y. Rahmanto, R. I. Borman, F. Rossi, Y. Jusman, and A. D. Alexander, “Identification of Pineapple Disease Based on Image Using Neural Network Self-Organizing Map ( SOM ) Model,” in International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS), 2022.

R. I. Borman, F. Rossi, D. Alamsyah, R. Nuraini, and Y. Jusman, “Classification of Medicinal Wild Plants Using Radial Basis Function Neural Network with Least Mean Square,” in International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS), 2022.

H. Mayatopani, R. I. Borman, W. T. Atmojo, and A. Arisantoso, “Classification of Vehicle Types Using Backpropagation Neural Networks with Metric and Ecentricity Parameters,” J. Ris. Inform., vol. 4, no. 1, pp. 65–70, 2021, doi: 10.34288/jri.v4i1.293.

R. I. Borman, I. Ahmad, and Y. Rahmanto, “Klasifikasi Citra Tanaman Perdu Liar Berkhasiat Obat Menggunakan Jaringan Syaraf Tiruan Radial Basis Function,” Bull. Informatics Data Sci., vol. 1, no. 1, pp. 6–13, 2022.

R. I. Borman and A. Ansori, “Implementasi Augmented Reality pada Aplikasi Android Pegenalan Gedung Pemerintahan Kota Bandar Lampung,” J. Teknoinfo, vol. 11, no. 1, pp. 1–5, Jun. 2017, doi: 10.33365/jti.v11i1.2.

A. Herdiansah, R. I. Borman, D. Nurnaningsih, A. A. J. Sinlae, and R. R. Al Hakim, “Klasifikasi Citra Daun Herbal Dengan Menggunakan Backpropagation Neural Networks Berdasarkan Ekstraksi Ciri Bentuk,” JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 2, pp. 388–395, 2022, doi: 10.30865/jurikom.v9i1.3846.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Implementasi Euclidean Distance dan Segmentasi K-Means Clustering Pada Identifikasi Citra Jenis Ikan Nila

Dimensions Badge

ARTICLE HISTORY


Published: 2022-08-30
Abstract View: 1026 times
PDF Download: 1188 times