Penerapan Algoritma K- Medoids Dalam Mengelompokkan Tingkat Kasus Kejahatan di Setiap Provinsi


Authors

  • Nur Arief STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
  • Irfan Sudahri Damanik STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
  • Eka Irawan STIKOM Tunas Bangsa, Pematangsiantar, Indonesia

Keywords:

Drug Abuse; K-Medoids; Data; Mining

Abstract

Drug abuse is a very serious problem and needs special attention from all parties. This is evidenced by the increasing number of drug cases and death cases due to the purchase of drugs issued from various media. The impact of drug addiction can be seen in one's physical, psychological and social. Drug abuse cases in each province in Indonesia have varying degrees of cases.This study aims to determine the cluster of drug abuse at high and low levels.The method needed for grouping drug case data is using data mining methods with the K-Medoids algorithm and using a computerized system that is rapidminer 5.3 application.The data used is sourced from the National Narcotics Agency of the Republic of Indonesia with the website: https://bnn.go.id/2015-2017 data which consists of 34 provinces to be divided into 2 clusters.From the calculation of the K-Medoids algorithm, high clusters were 10 provinces and low clusters were 24 provinces.This grouping is expected to be included for the government or related parties to further increase the socialization of the dangers of drugs in order to minimize mortality and crime due to drugs.

Downloads

Download data is not yet available.

References

D. F. Pramesti, M. T. Furqon, And C. Dewi, “Implementasi Metode K-Medoids Clustering Untuk Pengelompokan Data Potensi Kebakaran Hutan / Lahan Berdasarkan Persebaran Titik Panas ( Hotspot ),” J. Pengemb. Teknol. Inf. Dan Ilmu Komput., Vol. 1, No. 9, Pp. 723–732, 2017.

Z. Mustofa And I. S. Suasana, “Algoritma Clustering K-Medoids Pada E-Government Bidang Information And Communication Technology Dalam Penentuan Status Edgi,” Vol. 9, Pp. 1–10, 2018.

S. Defiyanti, M. Jajuli, And N. R. W, “Optimalisasi K - Medoid Dalam Pengklasteran Mahasiswa Pelamar Beasiswa Dengan Cubic Clustering Criterion,” Teknosi, Vol. 03, No. 01, Pp. 211–218, 2017.

H. Zayuka, S. M. Nasution, And Y. Purwanto, “Perancangan Dan Analisis Clustering Data Menggunakan Metode K-Medoids Untuk Berita Berbahasa Inggris,” In E-Proceeding Of Engineering, 2017, Vol. 4, No. 2, Pp. 2182–2190.

D. Listiyanti, Y. A. Syahbana, And S. R. Henim, “Perancangan Dan Implementasi Aplikasi Android Penentu Salient Area Pada Video Dengan Algoritma,” In Annual Research Seminar 2016, 2016, Vol. 2, No. 1, Pp. 96–101.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Penerapan Algoritma K- Medoids Dalam Mengelompokkan Tingkat Kasus Kejahatan di Setiap Provinsi

ARTICLE HISTORY

Submitted: 2021-12-24
Published: 2021-12-30
Abstract View: 41 times
PDF Download: 79 times