Analisis Sentimen Terhadap Program Kampanye Desak Anies Di X Menggunakan Naïve Bayes
DOI:
https://doi.org/10.30865/klik.v5i1.2085Keywords:
Sentiment Analysis; Naïve Bayes Algorithm; Desak Anies; X; CampaignAbstract
Information technology provides many influences including political, economic, artistic, cultural, social and educational. In 2023 the number of internet users in Indonesia will reach 215.63 million. This increase shows how important social media platforms like X are in public discussions. All attention is focused on political campaigns ahead of the Indonesian presidential election in 2024. This research was conducted to determine public sentiment towards two-way campaigns such as "Desak Anies" in X. Using the Naive Bayes algorithm, researchers divided public sentiment into 3 categories, namely positive, negative, and neutral. This shows public opinion and the effectiveness of campaign strategies. This research analyzes public opinion as much as 1401 comment data. The Naive Bayes algorithm is known to be very good at classifying text, followed by text pre-processing which is useful for cleaning text data so that it can be processed further. Next, TF-IDF is used to extract features. Using the Naive Bayes algorithm, sentiment classification shows the distribution of public opinion towards the "Desak Anies" campaign. The results provide useful suggestions for Amin's team in improving their strategy. The classification results show an accuracy of 90%, precision of 96%, recall of 93%, and F1-score of 95%. With more positive comments than neutral and negative comments.
Downloads
References
Fuad Amirullah, Syariful Alam, and M.Imam Sulistyo S, “Analisis Sentimen Terhadap Kinerja KPU Menjelang Pemilu 2024 Berdasarkan Opini Twitter Menggunakan Naïve Bayes,” STORAGE J. Ilm. Tek. dan Ilmu Komput., vol. 2, no. 3, pp. 69–76, 2023, doi: 10.55123/storage.v2i3.2293.
N. Rahmawati, M. Muslichatun, and M. Marizal, “Kebebasan Berpendapat Terhadap Pemerintah Melalui Media Sosial Dalam Perspektif Uu Ite,” Widya Pranata Huk. J. Kaji. dan Penelit. Huk., vol. 3, no. 1, pp. 62–75, 2021, doi: 10.37631/widyapranata.v3i1.270.
I. P. Rahayu, A. Fauzi, and J. Indra, “Analisis Sentimen Terhadap Program Kampus Merdeka Menggunakan Naive Bayes Dan Support Vector Machine,” J. Sist. Komput. dan Inform., vol. 4, no. 2, p. 296, 2022, doi: 10.30865/json.v4i2.5381.
Rahmania Mustaqlillah, Okky Widyaningtyas, and Tri Wantoro, “Efektivitas Penggunaan Twitter Sebagai Sarana Peningkatan Berpikir Kritis Mahasiswa Ilmu Komunikasi,” MUKASI J. Ilmu Komun., vol. 2, no. 1, pp. 18–28, 2023, doi: 10.54259/mukasi.v2i1.1346.
U. Surapati and A. Y. Zulkarnain, “Implementasi Metode Naïve Bayes Untuk Mendeteksi Hate Speech Pada Twitter,” INTECOMS J. Inf. Technol. Comput. Sci., vol. 6, no. 2, pp. 830–837, 2023, doi: 10.31539/intecoms.v6i2.7678.
Normah, B. Rifai, S. Vambudi, and R. Maulana, “Analisa Sentimen Perkembangan Vtuber Dengan Metode Support Vector Machine Berbasis SMOTE,” J. Tek. Komput. AMIK BSI, vol. 8, no. 2, pp. 174–180, 2022, doi: 10.31294/jtk.v4i2.
M. S. Hasibuan and A. Serdano, “Analisis Sentimen Kebijakan Pembelajaran Tatap Muka Menggunakan Support Vector Machine dan Naive Bayes,” JRST (Jurnal Ris. Sains dan Teknol., vol. 6, no. 2, p. 199, 2022, doi: 10.30595/jrst.v6i2.15145.
Alfandi Safira and F. N. Hasan, “Analisis Sentimen Masyarakat Terhadap Paylater Menggunakan Metode Naive Bayes Classifier,” Zo. J. Sist. Inf., vol. 5, no. 1, pp. 59–70, 2023, doi: 10.31849/zn.v5i1.12856.
A. Handayani et al., “Analisis Sentimen Terhadap Bakal Capres RI 2024 di Twitter Menggunakan Algoritma SVM,” J. Inf. Syst. Res., vol. 5, no. 1, pp. 53–63, 2023, doi: 10.47065/josh.v5i1.4379.
A. I. Putra and R. R. Santika, “Implementasi Machine Learning dalam Penentuan Rekomendasi Musik dengan Metode Content-Based Filtering,” Edumatic J. Pendidik. Inform., vol. 4, no. 1, pp. 121–130, 2020, doi: 10.29408/edumatic.v4i1.2162.
E. Hasibuan et al., “Implementasi Machine Learning untuk Prediksi Harga Mobil Bekas dengan Algoritma Regresi Linear berbasis Web,” J. Ilm. Komputasi, vol. 21, no. 4, pp. 595–602, 2022, doi: 10.32409/jikstik.21.4.3327.
S. Kumar, A. K. Kar, and P. V. Ilavarasan, “Applications of text mining in services management: A systematic literature review,” Int. J. Inf. Manag. Data Insights, vol. 1, no. 1, p. 100008, 2021, doi: 10.1016/j.jjimei.2021.100008.
Sriani, Suhardi, and Irsan Frianda Gultom, “Analisis Sentimen Kebijakan Pemberian Subsidi Motor Listrik Menggunakan Metode Support Vector Machine,” Fasilkom, vol. 13, no. 3, pp. 511–517, 2023.
S. Styawati, N. Hendrastuty, and A. R. Isnain, “Analisis Sentimen Masyarakat Terhadap Program Kartu Prakerja Pada Twitter Dengan Metode Support Vector Machine,” J. Inform. J. Pengemb. IT, vol. 6, no. 3, pp. 150–155, 2021, doi: 10.30591/jpit.v6i3.2870.
E. Febriyani and H. Februariyanti, “Analisis sentimen terhadap program kampus merdeka menggunakan algoritma naive bayes classifier di twitter,” J. Tekno Kompak, vol. 17, no. 1, pp. 25–38, 2023.
M. R. Fais Sya’ bani, U. Enri, and T. N. Padilah, “Analisis Sentimen Terhadap Bakal Calon Presiden 2024 Dengan Algoritme Naïve Bayes,” JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 2, p. 265, 2022, doi: 10.30865/jurikom.v9i2.3989.
Hartono, Metodologi Penelitian, no. Mei. ZANAFA PUBLISHING, 2019.
D. Normawati and S. A. Prayogi, “Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter,” J. Sains Komput. Inform. (J-SAKTI, vol. 5, no. 2, pp. 697–711, 2021.
K. Harefa and A. Jabbar, “Aplikasi Sistem Automated Essay Scoring Untuk Jawaban Soal Ujian Dengan Menerapkan Algoritma Jaro Winkler,” J. JIKSTRA, vol. 4, no. 02, pp. 109–119, 2022.
A. H. Hasugian, M. Fakhriza, and D. Zukhoiriyah, “Analisis Sentimen Pada Review Pengguna E-Commerce Menggunakan Algoritma Naïve Bayes,” J-SISKO TECH (Jurnal Teknol. Sist. Inf. dan Sist. Komput. TGD), vol. 6, no. 1, p. 98, 2023, doi: 10.53513/jsk.v6i1.7400.
H. N. Irmanda and Ria Astriratma, “Klasifikasi Jenis Pantun Dengan Metode Support Vector Machines (SVM),” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 4, no. 5, pp. 915–922, 2020, doi: 10.29207/resti.v4i5.2313.
S. Puad, G. Garno, and A. Susilo Yuda Irawan, “Analisis Sentimen Masyarakat Pada Twitter Terhadap Pemilihan Umum 2024 Menggunakan Algoritma Naïve Bayes,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 3, pp. 1560–1566, 2023, doi: 10.36040/jati.v7i3.6920.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Analisis Sentimen Terhadap Program Kampanye Desak Anies Di X Menggunakan Naïve Bayes
ARTICLE HISTORY
Issue
Section
Copyright (c) 2024 Dimas Arya, Ilka Zufria

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).