Integrating Remote Sensing and Spatial Data for Ecological Sustainability through Spatio-temporal Analysis


Authors

  • Yerik Afrianto Singgalen Universitas Katolik Indonesia Atma Jaya, Jakarta, Indonesia

DOI:

https://doi.org/10.30865/klik.v5i1.2082

Keywords:

Remote sensing; NDVI; NDBI; SAVI; Spatio-Temporal Analysis

Abstract

This research underscores the pivotal role of integrating spatial data and remote sensing technologies within a spatio-temporal analysis framework for regional development planning. Analyzing NDVI, NDBI, and SAVI values from 2013, 2018, and 2024 provided significant insights into vegetation health, urbanization, and soil conditions on Kumo Island. The NDVI values exhibited changes from a minimum of -0.0549, a mid-value of 0.1782, and a maximum of 0.4690 in 2013 to a minimum of 0.2456, a mid-value of 0.8296, and a maximum of 0.9416 in 2024. Similarly, the NDBI values shifted from a minimum of -0.8734, a mid-value of -0.5779, and a maximum of 0.0009 in 2013 to a minimum of -0.6561, a mid-value of -0.4304, and a maximum of 0.0247 in 2024. The SAVI values showed notable changes from a minimum of -0.0365, a mid-value of 0.1245, and a maximum of 0.3814 in 2013 to a minimum of 0.1138, a mid-value of 0.4953, and a maximum of 0.6160 in 2024. These findings highlight the importance of ecological sustainability in decision-making processes, demonstrating how advanced spatial analysis within a spatio-temporal framework can effectively monitor and manage land use changes. The urgency of this research lies in addressing rapid environmental changes and escalating human activities, necessitating timely and accurate monitoring techniques. The study reveals the utility of the NDVI, NDBI, and SAVI indices in assessing vegetation health, urbanization, and soil conditions, which are instrumental in identifying trends and informing sustainable development strategies. The research advocates for the continued use of remote sensing and spatial data to ensure balanced and informed regional development, emphasizing the necessity of sustainable practices to preserve ecological integrity while supporting socio-economic growth. Integrating remote sensing into the decision-making process enhances the accuracy and reliability of spatial data, leading to more effective and responsible regional development

Downloads

Download data is not yet available.

References

Z. Lin, K. Chen, K. Jiao, and Z. Li, “Spatio-temporal characteristics of traditional village landscape pattern and its influencing factors from the perspective of tourism development: a case study of Huangcheng Village, China,” J. Asian Archit. Build. Eng., vol. 00, no. 00, pp. 1–13, 2024, doi: 10.1080/13467581.2023.2298877.

M. Che, Y. Nian, S. Chen, H. Zhang, and T. Pei, “Spatio-temporal characteristics of human activities using location big data in Qilian Mountain National Park,” Int. J. Digit. Earth, vol. 16, no. 1, pp. 3794–3809, 2023, doi: 10.1080/17538947.2023.2259926.

Z. Deng, J. Cao, and Y. Hu, “Spatial and temporal evolution of landscape pattern in downtown area of Jixi City, China,” Eur. J. Remote Sens., vol. 53, no. sup1, pp. 104–113, 2020, doi: 10.1080/22797254.2020.1713024.

M. R. I. Baig, I. A. Ahmad, Shahfahad, M. Tayyab, and A. Rahman, “Analysis of shoreline changes in Vishakhapatnam coastal tract of Andhra Pradesh, India: an application of digital shoreline analysis system (DSAS),” Ann. GIS, vol. 26, no. 4, pp. 361–376, 2020, doi: 10.1080/19475683.2020.1815839.

R. Yao, Y. Zhang, L. Wang, J. Li, and Q. Yang, “Reconstructed NDVI and EVI datasets in China (ReVIChina) generated by a spatial-interannual reconstruction method,” Int. J. Digit. Earth, vol. 16, no. 2, pp. 4749–4768, 2023, doi: 10.1080/17538947.2023.2283492.

N. Mashiyi, L. Shikwambana, and M. Kganyago, “Spatio-temporal dynamics of methane concentration and its association to climatic and vegetation parameters: a case study of the Northern Cape Province, South Africa,” Geocarto Int., vol. 39, no. 1, p., 2024, doi: 10.1080/10106049.2024.2306266.

X. Liu et al., “Landsat-observed changes in forest cover and attribution analysis over Northern China from 1996?2020,” GIScience Remote Sens., vol. 61, no. 1, 2024, doi: 10.1080/15481603.2023.2300214.

Y. Wei, S. Sun, D. Liang, and Z. Jia, “Spatial–temporal variations of NDVI and its response to climate in China from 2001 to 2020,” Int. J. Digit. Earth, vol. 15, no. 1, pp. 1463–1484, 2022, doi: 10.1080/17538947.2022.2116118.

Y. Li et al., “Monitoring Chlorophyll-a concentration in karst plateau lakes using Sentinel 2 imagery from a case study of pingzhai reservoir in Guizhou, China,” Eur. J. Remote Sens., vol. 55, no. 1, pp. 1–19, 2022, doi: 10.1080/22797254.2022.2079565.

S. S. Wahla, J. H. Kazmi, and A. Tariq, “Mapping and monitoring of spatio-temporal land use and land cover changes and relationship with normalized satellite indices and driving factors,” Geol. Ecol. Landscapes, vol. 00, no. 00, pp. 1–17, 2023, doi: 10.1080/24749508.2023.2187567.

F. Zhang et al., “Dynamic monitoring and analysis of factors influencing ecological quality in rapidly urbanizing areas based on the Google Earth Engine,” Geocarto Int., vol. 38, no. 1, p., 2023, doi: 10.1080/10106049.2023.2256299.

C. Obuchowicz, C. Poussin, and G. Giuliani, “Change in observed long-term greening across Switzerland–evidence from a three decades NDVI time-series and its relationship with climate and land cover factors,” Big Earth Data, vol. 8, no. 1, pp. 1–32, 2024, doi: 10.1080/20964471.2023.2268322.

M. Chiesi et al., “Monitoring and analysis of crop irrigation dynamics in Central Italy through the use of MODIS NDVI data,” Eur. J. Remote Sens., vol. 55, no. 1, pp. 23–36, 2022, doi: 10.1080/22797254.2021.2013735.

M. E. Suaza-Medina, J. Laguna, R. Béjar, F. J. Zarazaga-Soria, and J. Lacasta, “Evaluating the efficiency of NDVI and climatic data in maize harvest prediction using machine learning,” Int. J. Digit. Earth, vol. 17, no. 1, pp. 1–15, 2024, doi: 10.1080/17538947.2024.2359565.

E. F. Wayima, “Comparative evaluation of NDVI strata and livelihood zones as spatial units of the practiced crop calendars,” Geol. Ecol. Landscapes, vol. 00, no. 00, pp. 1–9, 2022, doi: 10.1080/24749508.2022.2144855.

M. R. Kaloop, M. Iqbal, M. T. Elnabwy, E. K. Mustafa, and J. W. Hu, “A novel AI approach for modeling land surface temperature of Freetown, Sierra Leone, based on land-cover changes,” Int. J. Digit. Earth, vol. 15, no. 1, pp. 1236–1258, 2022, doi: 10.1080/17538947.2022.2099022.

F. F. ?im?ek and S. S. Durduran, “Land cover classification using Land Parcel Identification System (LPIS) data and open source Eo-Learn library,” Geocarto Int., vol. 0, no. 0, pp. 1–18, 2022, doi: 10.1080/10106049.2022.2146760.

A. Mondal, S. Guha, and S. Kundu, “Dynamic status of land surface temperature and spectral indices in Imphal city, India from 1991 to 2021,” Geomatics, Nat. Hazards Risk, vol. 12, no. 1, pp. 3265–3286, 2021, doi: 10.1080/19475705.2021.2008023.

E. Kamali Maskooni, H. Hashemi, R. Berndtsson, P. Daneshkar Arasteh, and M. Kazemi, “Impact of spatiotemporal land-use and land-cover changes on surface urban heat islands in a semiarid region using Landsat data,” Int. J. Digit. Earth, vol. 14, no. 2, pp. 250–270, 2021, doi: 10.1080/17538947.2020.1813210.

R. S. Anupriya and T. A. Rubeena, “Spatio-temporal urban land surface temperature variations and heat stress vulnerability index in Thiruvananthapuram city of Kerala, India,” Geol. Ecol. Landscapes, vol. 00, no. 00, pp. 1–17, 2023, doi: 10.1080/24749508.2023.2182088.

B. Chisadza, F. Ncube, M. Macherera, T. Bangira, and O. Gwate, “Spatio-temporal variations in the ecological vulnerability of the Upper Mzingwane sub-catchment of Zimbabwe,” Geomatics, Nat. Hazards Risk, vol. 14, no. 1, p., 2023, doi: 10.1080/19475705.2023.2190857.

S. Guha, H. Govil, N. Gill, and A. Dey, “Analytical study on the relationship between land surface temperature and land use/land cover indices,” Ann. GIS, vol. 26, no. 2, pp. 201–216, 2020, doi: 10.1080/19475683.2020.1754291.

B. Bobo Merga, K. W. Tabor, and G. A. Melka, “Analysis of the cooling effects of urban green spaces in mitigating micro-climate change using geospatial techniques in Adama City, Ethiopia,” Sustain. Environ., vol. 10, no. 1, 2024, doi: 10.1080/27658511.2024.2350806.

H. Liu et al., “Fine-grained wetland classification for national wetland reserves using multi-source remote sensing data and Pixel Information Expert Engine (PIE-Engine),” GIScience Remote Sens., vol. 60, no. 1, 2023, doi: 10.1080/15481603.2023.2286746.

A. Philip, R. R.J, and J. V.K, “Dynamic monitoring and analysis of ecological quality based on RSEI: a case study of Akkulam-Veli Lake basin of Thiruvananthapuram city, Kerala, India,” Geol. Ecol. Landscapes, vol. 00, no. 00, pp. 1–21, 2024, doi: 10.1080/24749508.2024.2359772.

H. M. Imran et al., “Land surface temperature and human thermal comfort responses to land use dynamics in Chittagong city of Bangladesh,” Geomatics, Nat. Hazards Risk, vol. 13, no. 1, pp. 2283–2312, 2022, doi: 10.1080/19475705.2022.2114384.

A. Dilawar et al., “Spatiotemporal shifts in thermal climate in responses to urban cover changes: a-case analysis of major cities in Punjab, Pakistan,” Geomatics, Nat. Hazards Risk, vol. 12, no. 1, pp. 763–793, 2021, doi: 10.1080/19475705.2021.1890235.

M. Castelo-Cabay, J. A. Piedra-Fernandez, and R. Ayala, “Deep learning for land use and land cover classification from the Ecuadorian Paramo.,” Int. J. Digit. Earth, vol. 15, no. 1, pp. 1001–1017, 2022, doi: 10.1080/17538947.2022.2088872.

F. Mirchooli, S. H. Sadeghi, and A. Khaledi Darvishan, “Spatiotemporal dynamic of environmental indices of watershed sustainability in connection with land-use change,” Ecosyst. Heal. Sustain., vol. 8, no. 1, 2022, doi: 10.1080/20964129.2021.2024454.

P. Singh, A. Sarkar Chaudhuri, P. Verma, V. K. Singh, and S. R. Meena, “Earth observation data sets in monitoring of urbanization and urban heat island of Delhi, India,” Geomatics, Nat. Hazards Risk, vol. 13, no. 1, pp. 1762–1779, 2022, doi: 10.1080/19475705.2022.2097452.

T. Modi et al., “Geospatial evaluation of normalized difference vegetation index (NDVI) and urban heat island: a spatio-temporal study of Gandhinagar City, Gujarat, India,” Geomatics, Nat. Hazards Risk, vol. 15, no. 1, p., 2024, doi: 10.1080/19475705.2024.2356214.

J. Moussa Kourouma et al., “Assessing the spatio-temporal variability of NDVI and VCI as indices of crops productivity in Ethiopia: a remote sensing approach,” Geomatics, Nat. Hazards Risk, vol. 12, no. 1, pp. 2880–2903, 2021, doi: 10.1080/19475705.2021.1976849.

N. Montaldo, A. Gaspa, and R. Corona, “Assimilation of NDVI data in a land surface–Vegetation model for leaf area index predictions in a tree-grass ecosystem,” Int. J. Digit. Earth, vol. 16, no. 1, pp. 3810–3837, 2023, doi: 10.1080/17538947.2023.2259226.

Y. Meng, B. Hou, C. Ding, L. Huang, Y. Guo, and Z. Tang, “Spatiotemporal patterns of planted forests on the Loess Plateau between 1986 and 2021 based on Landsat NDVI time-series analysis,” GIScience Remote Sens., vol. 60, no. 1, 2023, doi: 10.1080/15481603.2023.2185980.

X. Liu, L. Ji, C. Zhang, and Y. Liu, “A method for reconstructing NDVI time-series based on envelope detection and the Savitzky-Golay filter,” Int. J. Digit. Earth, vol. 15, no. 1, pp. 553–584, 2022, doi: 10.1080/17538947.2022.2044397.

M. Adan, H. E. Z. Tonnang, K. Greve, C. Borgemeister, and G. Goergen, “Use of time series normalized difference vegetation index (NDVI) to monitor fall armyworm (Spodoptera frugiperda) damage on maize production systems in Africa,” Geocarto Int., vol. 38, no. 1, p., 2023, doi: 10.1080/10106049.2023.2186492.

Z. hua Xu et al., “A comparative study on the applicability and effectiveness of NSVI and NDVI for estimating fractional vegetation cover based on multi-source remote sensing image,” Geocarto Int., vol. 38, no. 1, 2023, doi: 10.1080/10106049.2023.2184501.

Z. Liu, D. He, Q. Shi, and X. Cheng, “NDVI time-series data reconstruction for spatial-temporal dynamic monitoring of Arctic vegetation structure,” Geo-Spatial Inf. Sci., 2024, doi: 10.1080/10095020.2024.2336602.

S. Li, Z. Zhou, R. Ma, S. Liu, and Q. Guan, “Extracting subpixel vegetation NDVI time series for evaluating the mixed pixel effect on GPP estimation in urban areas,” Int. J. Digit. Earth, vol. 16, no. 1, pp. 3222–3238, 2023, doi: 10.1080/17538947.2023.2246945.

E. Ayari, Z. Kassouk, Z. Lili-Chabaane, N. Ouaadi, N. Baghdadi, and M. Zribi, “NDVI estimation using Sentinel-1 data over wheat fields in a semiarid Mediterranean region,” GIScience Remote Sens., vol. 61, no. 1, 2024, doi: 10.1080/15481603.2024.2357878.

K. Jitkajornwanich, N. Pant, M. Fouladgar, and R. Elmasri, “A survey on spatial, temporal, and spatio-temporal database research and an original example of relevant applications using sql ecosystem and deep learning,” J. Inf. Telecommun., vol. 4, no. 4, pp. 524–559, 2020, doi: 10.1080/24751839.2020.1774153.

M. Krzy?ko, P. Nijkamp, W. Ratajczak, W. Wo?y?ski, and B. Wenerska, “Spatio-temporal principal component analysis,” Spat. Econ. Anal., vol. 19, no. 1, pp. 8–29, 2024, doi: 10.1080/17421772.2023.2237532.

W. Wang, F. Zhen, Y. Cao, Y. Wang, and Y. Ou, “How to assess a university campus planning — a case study based on students’ spatio-temporal behavior,” J. Asian Archit. Build. Eng., vol. 00, no. 00, pp. 1–16, 2024, doi: 10.1080/13467581.2024.2358218.

X. Gao, H. Chen, and J. Haworth, “A spatiotemporal analysis of the impact of lockdown and coronavirus on London’s bicycle hire scheme: from response to recovery to a new normal,” Geo-Spatial Inf. Sci., vol. 26, no. 4, pp. 664–684, 2023, doi: 10.1080/10095020.2023.2233570.

Y. Han, Y. Hu, H. Zhu, and F. Wang, “A cyclically adjusted spatio-temporal kernel density estimation method for predictive crime hotspot analysis,” Ann. GIS, vol. 29, no. 2, pp. 177–191, 2023, doi: 10.1080/19475683.2023.2166584.

K. Wiru et al., “Geospatial analysis of malaria mortality in the kintampo health and demographic surveillance area of central Ghana,” Ann. GIS, vol. 27, no. 2, pp. 139–149, 2021, doi: 10.1080/19475683.2020.1853231.

M. K. Gupta and M. Sharif, “Spatio-temporal analysis of temperature projections based on representative concentration pathways for Satluj River Basin, India,” Cogent Eng., vol. 8, no. 1, 2021, doi: 10.1080/23311916.2021.1933683.

R. A. Persad, “Spatio-temporal analysis of mental illness and the impact of marginalization-based factors: a case study of Ontario, Canada,” Ann. GIS, vol. 26, no. 3, pp. 237–250, 2020, doi: 10.1080/19475683.2020.1791251.

A. Abdelkarim, “Monitoring and forecasting of land use/land cover (LULC) in Al-Hassa Oasis, Saudi Arabia based on the integration of the Cellular Automata (CA) and the Cellular Automata-Markov Model (CA-Markov),” Geol. Ecol. Landscapes, vol. 00, no. 00, pp. 1–32, 2023, doi: 10.1080/24749508.2022.2163741.

J. Ferner, A. Linstädter, C. Rogass, K. H. Südekum, and S. Schmidtlein, “Towards Forage Resource Monitoring in subtropical Savanna Grasslands: going multispectral or hyperspectral?,” Eur. J. Remote Sens., vol. 54, no. 1, pp. 364–384, 2021, doi: 10.1080/22797254.2021.1934556.

M. Wi?ckowski, “How border tripoints offer opportunities for transboundary tourism development,” Tour. Geogr., vol. 25, no. 1, pp. 310–333, 2023, doi: 10.1080/14616688.2021.1878268.

K. Jiao, X. Yong, S. Mao, and K. Chen, “Analysis of the evolution and influencing factors of ecological environment quality after the transformation of resource-exhausted cities based on GEE and RSEI: a case study of Xuzhou City, China,” J. Asian Archit. Build. Eng., vol. 00, no. 00, pp. 1–19, 2024, doi: 10.1080/13467581.2024.2358224.

B. Babiso Badesso, A. Bajigo Madalcho, and M. Mesene Mena, “Trends in forest cover change and degradation in Duguna Fango, Southern Ethiopia,” Cogent Environ. Sci., vol. 6, no. 1, 2020, doi: 10.1080/23311843.2020.1834916.

F. Qian, Y. Chi, R. Lal, and K. Lorenz, “Spatio-temporal characteristics of cultivated land fragmentation in different landform areas with a case study in Northeast China,” Ecosyst. Heal. Sustain., vol. 6, no. 1, 2020, doi: 10.1080/20964129.2020.1800415.

Y. Han et al., “Tracking vegetation degradation and recovery in multiple mining areas in Beijing, China, based on time-series Landsat imagery,” GIScience Remote Sens., vol. 58, no. 8, pp. 1477–1496, 2021, doi: 10.1080/15481603.2021.1996319.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Integrating Remote Sensing and Spatial Data for Ecological Sustainability through Spatio-temporal Analysis

Dimensions Badge

ARTICLE HISTORY


Published: 2024-08-14
Abstract View: 111 times
FDF Download: 40 times

Most read articles by the same author(s)

1 2 > >>