Deteksi Jenis Penyakit Pada Tanaman Padi Menggunakan Yolo V5


Authors

  • Muhammad Deden Miftah Fauzi Universitas Buana Perjuangan Karawang, Karawang, Indonesia
  • Tohirin Al Mudzakir Universitas Buana Perjuangan Karawang, Karawang, Indonesia
  • Cici Emilia Sukmawati Universitas Buana Perjuangan Karawang, Karawang, Indonesia
  • Jamaludin Indra Universitas Buana Perjuangan Karawang, Karawang, Indonesia

DOI:

https://doi.org/10.30865/klik.v5i1.2009

Keywords:

Disease in rice; YOLO v5; Epoch

Abstract

The problem of disease in rice plants is an obstacle faced by farmers after planting. One of the rice diseases that really worries farmers is disease brown spot, Bacterial Blight, and blast, which causes the leaves to turn yellow prematurely, spots and rice stalks rot. One farmer in Parigi Village whose rice field was attacked by disease suffered a loss of Rp. 6,000,000 to Rp. 8,000,000 per hectare. From all the rice fields of Parigi Village residents. This research aims to detect types of disease in rice plants by applying methods deep learning using YOLO v5 (You only Look Once). The trained model is able to recognize Brown Spot, Bacterial Blight and Blast diseases with a high level of accuracy.  In this analysis, two epochs stand out as the best candidates, namely epoch 250 and epoch 200. At epoch 250, the model shows the highest precision (0.802) and a strong mAP@0.5 value (0.702), indicating excellent model performance without overfitting. Meanwhile, at epoch 200, although precision and recall were slightly lower, the highest mAP@0.5:0.95 value (0.393) indicated better generalization ability. Based on these metrics, epoch 150 is identified as the optimal epoch, although epoch 200 also shows strong performance, especially in generalization over a wide range of threshold IoU. The calculation results show the following performance metrics: Precision: 92.5%; Recall: 90.8%; F1-Score: 91.6%; Mean Average Precision (mAP): 93.2%.

Downloads

Download data is not yet available.

References

N. Hikmah and A. Khumaidi, “RANCANG BANGUN PROTOTIPE PENGUSIR HAMA BURUNG MENGGUNAKAN SENSOR GERAK RCWL MICROWAVE BERBASIS INTERNET OF THINGS,” Jurnal SIMETRIS, vol. 11, no. 2, 2020.

ADEN BAYU RESPATI1, MUHAMAD NURDIN YUSUF, and DANI LUKMAN HAKIM, “ANALISIS SALURAN PEMASARAN KOMODITAS PADI (Studi Kasus di Desa Selasari Kecamatan Parigi Kabupaten Pangandaran),” 2020.

J. Juswadi, P. Sumarna, and N. S. Mulyati, “Keragaan Produktivitas Padi Sawah Jawa Barat Dan Faktor Yang Mempengaruhinya,” Paspalum: Jurnal Ilmiah Pertanian, vol. 8, no. 2, p. 122, Sep. 2020, doi: 10.35138/paspalum.v8i2.199.

S. M. Sudarjat1, Vijaya Isnaniawardhani, and Muhammad Abdillah Hasan Qonit, “Sosialisasi Pengendalian Hama Terpadu di Desa Cintaratu Kecamatan Parigi Kabupaten Pangandaran,” 2020.

A. F. Isma, M. JT Siagian, and M. A. Muthalib, “Prototipe Teknologi Tepat Guna Bertenaga Cahaya Matahari Pengusir Hama Burung Berbasis Smartphone dan Arduino Uno,” Jurnal Teknik Elektro dan Komputasi (ELKOM), vol. 5, no. 1, pp. 38–44, Mar. 2023, doi: 10.32528/elkom.v5i1.9192.

“BADAN PUSAT STATISTIK KABUPATEN CIAMIS BPS-STATISTICS OF CIAMIS REGENCY.”

J. Juswadi, P. Sumarna, and N. S. Mulyati, “Keragaan Produktivitas Padi Sawah Jawa Barat Dan Faktor Yang Mempengaruhinya,” Paspalum: Jurnal Ilmiah Pertanian, vol. 8, no. 2, p. 122, Sep. 2020, doi: 10.35138/paspalum.v8i2.199.

J. Lintar Balle et al., “Implementasi alat pengusir hama sawah dengan cara tradisional dan modern bertenaga surya menggunakan sensor PIR berbasis Android Implementation of rice field pest repellents in a way traditional and modern solar powered using an Android-based PIR sensor,” 2021.

ersandy, Novi Lestari, and Lukman Sunardi, “INTERNET OF THING PENGUSIR HAMA BURUNG PEMAKAN PADI PADA KOMUNITAS PERSAWAHAN SRI REJEKI,” 2022.

K. A. Baihaqi and C. Zonyfar, “Deteksi Lahan Pertanian Yang Terdampak Hama Tikus Menggunakan Yolo v5,” 2022.

J. Deng et al., “Deep-Learning-Based Rice Disease and Insect Pest Detection on a Mobile Phone,” Agronomy, vol. 13, no. 8, pp. 1–20, 2023, doi: 10.3390/agronomy13082139.

L. Suroiyah, Y. Rahmawati, and R. Dijaya, “FACEMASK DETECTION USING YOLO V5,” Jurnal Teknik Informatika (Jutif), vol. 4, no. 6, pp. 1277–1286, Dec. 2023, doi: 10.52436/1.jutif.2023.4.6.1043.

Hasbi Dawami, Mahmud Dwi Sulistiyo, and Ema Rachmawati, “Deteksi Penggunaan Masker Wajah Menggunakan YOLOv5,” 2023.

S. Yuliany, Aradea, and Andi Nur Rachman, “Implementasi Deep Learning pada Sistem Klasifikasi Hama Tanaman Padi Menggunakan Metode Convolutional Neural Network (CNN),” Jurnal Buana Informatika, vol. 13, no. 1, pp. 54–65, 2022, doi: 10.24002/jbi.v13i1.5022.

S. R. D. Amiril, “Implementasi Algoritma Convolutional Neural Network Pada Klasifikasi Penyakit Padi Melalui Citra Daun,” Dspace.Uii.Ac.Id, p. 23, 2020, [Online]. Available: https://dspace.uii.ac.id/handle/123456789/30189%0Ahttps://dspace.uii.ac.id/bitstream/handle/123456789/30189/16611043 Siti Rahmah Danur Amiril.pdf?sequence=1

ADEN BAYU RESPATI1, MUHAMAD NURDIN YUSUF, and DANI LUKMAN HAKIM, “ANALISIS SALURAN PEMASARAN KOMODITAS PADI (Studi Kasus di Desa Selasari Kecamatan Parigi Kabupaten Pangandaran),” 2020.

Adi Rizky Pratama, Ayu Ratna Juwita, and Tohirin Al Mudzakir, “Klasifikasi Daging Sapi Berdasarkan Ciri Warna Dengan Metode Otsu dan K-Nearest Neighbor,” 2021.

N. M. Yasen et al., “Pemanfaatan Yolo Untuk Deteksi Hama Dan Penyakit Pada Daun Cabai Menggunakan Metode Deep Learning,” vol. 15, pp. 63–71, 2023.

S. Indra Maiyanti et al., “Perbandingan Klasifikasi Penyakit Kanker Paru-paru menggunakan Support Vector Machine dan K-Nearest Neighbor,” vol. 18, no. 1, 2023, doi: 10.33998/processor.2023.18.1.700.

S. Suhendar, A. Purnama, and E. Fauzi, “Deteksi Penyakit Pada Daun Tanaman Ubi Jalar Menggunakan Metode Convolutional Neural Network,” Jurnal Ilmiah Informatika Global, vol. 14, no. 3, pp. 62–67, 2023, doi: 10.36982/jiig.v14i3.3478.

I. Nugraha Pratama, T. Rohana, T. Al Mudzakir, and P. Karawang, “PENGENALAN SAMPAH PLASTIK DENGAN MODEL CONVOLUTIONAL NEURAL NETWORK,” 2020.

J. H. Kim, N. Kim, Y. W. Park, and C. S. Won, “Object Detection and Classification Based on YOLO-V5 with Improved Maritime Dataset,” J Mar Sci Eng, vol. 10, no. 3, Mar. 2022, doi: 10.3390/jmse10030377.

D. I. Mulyana and M. A. Rofik, “Implementasi Deteksi Real Time Klasifikasi Jenis Kendaraan Di Indonesia Menggunakan Metode YOLOV5,” 2022.

S. R. D. Amiril, “Implementasi Algoritma Convolutional Neural Network Pada Klasifikasi Penyakit Padi Melalui Citra Daun,” Dspace.Uii.Ac.Id, p. 23, 2020.

D. Ruwandara, M. Jajuli, and A. Rizal, “Analisis Algoritma K-Means Clustering Untuk Daerah Penyebaran Sampah di Kota Bekasi,” JOINS (Journal of Information System), vol. 6, no. 1, pp. 56–63, May 2021, doi: 10.33633/joins.v6i1.4085.

N. Saefulloh, J. Indra, and A. Ratna Juwita, “Implementasi Algoritma Convolutional Neural Network (CNN) Untuk Klasifikasi Kecacatan Pada Proses Welding di Perusahaan Manufacturing,” Technology and Science (BITS), vol. 6, no. 1, pp. 387–394, 2024, doi: 10.47065/bits.v6i1.5321.

D. Darmadi, P. Pratikso, and M. Rachmat, “Survei Volume Lalulintas Dengan Internet Of Thing Yolo-V5,” J Teknol, vol. 11, no. 1, pp. 25–35, Nov. 2023, doi: 10.31479/jtek.v11i1.276.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Deteksi Jenis Penyakit Pada Tanaman Padi Menggunakan Yolo V5

Dimensions Badge

ARTICLE HISTORY


Published: 2024-08-14
Abstract View: 695 times
FDF Download: 641 times