Analisis Sentimen Terhadap Rangka E-SAF Honda Pada Media Sosial X Dengan Algoritma Naïve Bayes


Authors

  • Akbar Cleary Syafi'i Universitas Muhammadiyah Prof. Dr. Hamka, Jakarta, Indonesia
  • Ade Davy Wiranata Universitas Muhammadiyah Prof. Dr. Hamka, Jakarta, Indonesia

DOI:

https://doi.org/10.30865/klik.v5i1.1993

Keywords:

Sentiment Analysis; Frame; E-SAF; Naïve Bayes; Rapidminer

Abstract

Motorcycles are the best vehicles for traveling when traffic is heavy because motorcycles allow people to save time while going about their daily commute due to their small size and ability to move on narrow streets. An important component in a motorcycle is the motorcycle frame, the motorcycle frame is a useful part to support the weight of these components in the motorcycle vehicle system. However, it is rumored that a motorcycle frame with the E-SAF type has poor quality, so a sentiment analysis is needed. This research aims to collect the number of comments, both positive and negative, from social media users X about the E-SAF framework, and also to determine the accuracy of the application of the Naive Bayes method. The datasets collected from social media X amounted to 756 datasets. Then after going through the stages of data cleaning such as cleansing, tokenize, and stopword filters, the data that can be used for this research amounted to 696 datasets. The next stage is data labeling, namely by dividing the dataset with a ratio of 60:40, namely 60% of the training data totaling 417 datasets that have been manually labeled with the results of 224 negatively charged data, 193 positively charged data while the test data is 40% with a total of 279 datasets which will later be automatically labeled with the implementation of the Naive Bayes method. The next stage is that the test data goes through the data processing stage so that the test data is ready to be implemented into the Naive Bayes method. After implementing the Naive Bayes method, the accuracy obtained was 70.27% with a precision of 76% and also a recall of 79.17%. There was also a true Positive data of 57 and a true Negative data of 21. Data Visualization also displays words that appear frequently in the dataset. Here it shows that the Naive Bayes method is quite effective for the classification of sentiment analysis

Downloads

Download data is not yet available.

References

S. Anwar and Mujito, “Faktor-Faktor Yang Mempengaruhi Keputusan Pembelian Motor Merek Yamaha Di Kota Bogor,” JIMKES Jurnal Ilmiah Manajemen Kesatuan, vol. 9, no. 1, pp. 189–202, 2021.

R. Setiawan, D. Sugiyanto, and ari Daryus, “ANALISIS SIMULASI KEKUATAN DAN PEMBUATAN RANGKA KENDARAAN SEPEDA MOTOR LISTRIK Analysis of Strength Simulation and Frame Fabrication of Electric Motorcycle Vehicle,” Jurnal Konversi Energi dan Manufaktur, vol. 8, no. 1, pp. 58–66, 2023.

Endro Sutarno, “Mengenal Rangka eSAF Pada Sepeda Motor Honda,” HERONUSA HONDA. Accessed: Nov. 01, 2023. [Online]. Available: https://heronusahonda.com/?p=1467

Y. Akbar and T. Sugiharto, “Analisis Sentimen Pengguna Twitter di Indonesia Terhadap ChatGPT Menggunakan Algoritma C4.5 dan Naïve Bayes (Yuma Akbar 1*, Tri Sugiharto 2 ) Analisis Sentimen Pengguna Twitter di Indonesia Terhadap ChatGPT Menggunakan Algoritma C4.5 dan Naïve Bayes,” Jurnal Sains dan Teknologi, vol. 5, no. 1, pp. 115–122, 2023, doi: 10.55338/saintek.v4i3.1368.

A. Safira, A. S. Masyarakat…?, and F. N. Hasan, “ANALISIS SENTIMEN MASYARAKAT TERHADAP PAYLATER MENGGUNAKAN METODE NAIVE BAYES CLASSIFIER,” Jurnal Sistem Informasi, vol. 5, no. 1, 2023.

D. P. Ray, F. N. Hasan, and A. R. Dzikrillah, “KLIK: Kajian Ilmiah Informatika dan Komputer Analisis Sentimen Terhadap KPU 2024 Berdasarkan Tweet Media Sosial Twitter Menggunakan Algoritma Naïve Bayes,” Media Online, vol. 4, no. 4, pp. 2235–2243, 2024, doi: 10.30865/klik.v4i4.1587.

I. Gusti, A. Indrawan, D. Ayu, I. Cahya Dewi, I. A. Putu, and A. Wisdantini, “Analisis Sentimen Terhadap Presidensi G20 2022 pada Media Sosial Twitter Menggunakan Metode Naïve Bayes,” KLIK: Kajian Ilmiah Informatika dan Komputer, vol. 4, no. 1, pp. 553–561, 2023, doi: 10.30865/klik.v4i1.1104.

D. Duei Putri, G. F. Nama, and W. E. Sulistiono, “Analisis Sentimen Kinerja Dewan Perwakilan Rakyat (DPR) Pada Twitter Menggunakan Metode Naive Bayes Classifier,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 10, no. 1, Jan. 2022, doi: 10.23960/jitet.v10i1.2262.

I. R. Afandi, F. Noor, H. #2, A. A. Rizki, N. Pratiwi, and Z. Halim, “Analisis Sentimen Opini Masyarakat Terkait Pelayanan Jasa Ekspedisi Anteraja Dengan Metode Naive Bayes,” Jurnal Linguistik Komputasional (JLK), vol. 5, no. 2, pp. 63–70, 2022, [Online]. Available: https://t.co/2HAdwg1drL

R. Hidayat, A. B. Hakim, and R. Nugraha, “Perbandingan Metode Naïve Bayes Dan Decision Tree C4.5 untuk Analisis Sentimen Produk Es Teh Indonesia di Media Sosial Twitter,” Jurnal Sistem Komputer dan Kecerdasan Buatan, vol. 7, no. 2, pp. 88–98, 2024.

F. F. Rachman and S. Pramana, “Analisis Sentimen Pro dan Kontra Masyarakat Indonesia tentang Vaksin COVID-19 pada Media Sosial Twitter,” 2020.

H. Derajad Wijaya and S. Dwiasnati, “Implementasi Data Mining dengan Algoritma Naïve Bayes pada Penjualan Obat,” JURNAL INFORMATIKA, vol. 7, no. 1, 2020, [Online]. Available: http://ejournal.bsi.ac.id/ejurnal/index.php/ji

Y. Severianus and S. Kolo, “ANALISIS SENTIMEN TERHADAP OPINI MASYARAKAT TERKAIT PERUBAHAN CUACA DI INDONESIA MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE,” 2024.

D. Ismiyana Putri and M. Yudhi Putra, “KOMPARASI ALGORITMA DALAM MEMPREDIKSI PERUBAHAN HARGA SAHAM GOTO MENGGUNAKAN RAPIDMINER,” Jurnal Khatulistiwa Informatika, vol. 11, no. 1, 2023, [Online]. Available: https://www.kaggle.com/,

Z. Setiawan et al., BUKU AJAR DATA MINING. Jambi: PT. Sonpedia Publishing Indonesia., 2023.

R. Ardiansyah Yudhanegara, N. Aliya Hana, S. Yonanda Mahfiridho, and A. Rosadi Kardian, “Perbandingan Resident Set Size dan Virtual Memory Size Algoritma Machine Learning dalam Analisis Sentimen,” JURNAL MEDIA INFORMATIKA BUDIDARMA, 2024, doi: 10.30865/mib.v8i1.7201.

P. W. Rahayu et al., Buku Ajar Data Mining, Cetakan Pertama. Jambi: PT. Sonpedia Publishing Indonesia., 2024.

S. Syafrizal, M. Afdal, and R. Novita, “Analisis Sentimen Ulasan Aplikasi PLN Mobile Menggunakan Algoritma Naïve Bayes Classifier dan K-Nearest Neighbor,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 4, no. 1, pp. 10–19, Dec. 2023, doi: 10.57152/malcom.v4i1.983.

J. S. Gea and H. Budiati, “Analisis Sentimen Masyarakat Terhadap Direktorat Jenderal Pajak,” JURNAL SAINS DAN KOMPUTER, vol. 8, no. 01, pp. 30–36, Jan. 2024, doi: 10.61179/jurnalinfact.v8i01.466.

A. T. Mukti and F. N. Hasan, “Analisis Sentimen Warganet Terhadap Keberadaan Juru Parkir Liar Menggunakan Metode Naive Bayes Classifier,” JURNAL MEDIA INFORMATIKA BUDIDARMA , pp. 644–653, 2024, doi: 10.30865/mib.v8i1.6982.

E. Dwi Nugraha and G. Gata, “Penerapan Algoritma KNN Pada Twitter Untuk Analisis Sentimen Masyarakat Terhadap Event MotoGP Di Sirkuit Mandalika,” Seminar Nasional Mahasiswa Fakultas Teknologi Informasi (SENAFTI) Jakarta-Indonesia, 2022.

C. Cahyaningtyas, Y. Nataliani, and I. R. Widiasari, “Analisis sentimen pada rating aplikasi Shopee menggunakan metode Decision Tree berbasis SMOTE,” AITI: Jurnal Teknologi Informasi, vol. 18, no. Agustus, pp. 173–184, 2021.

N. Luh, P. P. Dewi, I. Nyoman Purnama, and N. W. Utami, “Penerapan Data Mining Untuk Clustering Penilaian Kinerja Dosen Menggunakan Algoritma K-Means (Studi Kasus: STMIK Primakara),” Jurnal Ilmiah Teknologi Informasi Asia, vol. 16, no. 2, 2022.

Hartati, H. Deni, M. Akhsanal, Z. Wahyudi, A. Ariyanto, and D. D. Saputra, “Optimasi Analisis Sentimen Pada Twitter Olshop Tokopedia Menggunakan Textmining Dengan Algoritma Naïve Bayes & Adaboost,” Jurnal Sains Komputer & Informatika (J-SAKTI), vol. 6, no. 2, pp. 821–828, 2022.

Syahril Dwi Prasetyo, Shofa Shofiah Hilabi, and Fitri Nurapriani, “Analisis Sentimen Relokasi Ibukota Nusantara Menggunakan Algoritma Naïve Bayes dan KNN,” Jurnal KomtekInfo, vol. 10, no. 1, pp. 1–7, Jan. 2023, doi: 10.35134/komtekinfo.v10i1.330.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Analisis Sentimen Terhadap Rangka E-SAF Honda Pada Media Sosial X Dengan Algoritma Naïve Bayes

Dimensions Badge

ARTICLE HISTORY


Published: 2024-08-14
Abstract View: 343 times
FDF Download: 300 times