Sentiment Analisis Opini Masyarakat Sistem Ganjil Genap di Twitter Menggunakan Algoritma Naive Bayes Classifier dan Algoritma K-NN


Authors

  • Acep Setiawan Universitas Muhammadiyah Prof. Dr. Hamka, Jakarta, Indonesia
  • Arafat Febriandirza Universitas Muhammadiyah Prof. Dr. Hamka, Jakarta, Indonesia

DOI:

https://doi.org/10.30865/klik.v5i1.1837

Keywords:

Sentiment Analysis; Public Opinion; Twitter; Odd-Even System; Naïve Bayes Classifier Algorithm; K-Nearest Neighbor Algorithm; Accuracy

Abstract

This journal's abstract addresses sentiment analysis of public opinion in relation to the odd-even system's implementation on Twitter, utilizing the K-NN and Naïve Bayes Classifier algorithms. The odd-even system was discussed in tweets by Twitter users, which served as the source data. The tweets were categorized into three sentiment categories: positive, negative, and neutral. The analysis's findings indicate that, of the total number of tweets gathered, 391 were categorized as neutral, 50 as negative, and 59 as positive. In addition, it was found that the Naïve Bayes algorithm and the K-Nearest Neighbor algorithm both had an average accuracy rate of approximately 79.72%. This suggests that both algorithms do similarly well when it comes to classifying the sentiment of the tweets under discussion. With respect to sentiment analysis of public opinion on the Twitter platform, this conclusion clarifies the performance comparison between the Naïve Bayes and K-Nearest Neighbor algorithms.

Downloads

Download data is not yet available.

References

N. Sucahyo, L. Nurlaela, and R. R. Waryono, “Analisis Sentimen Masyarakat Jakarta Terhadap Kebijakan Perluasan Dan Perpanjangan Ganjil Genap di Media Sosial Twitter,” J. Teknol. Inform. dan Komput., vol. 7, no. 1, pp. 97–111, 2021, doi: 10.37012/jtik.v7i1.506.

F. A. Rohmansyah, B. Bintoro, and I. Santoso, “Analisis Sentimen Terhadap Penerapan Sistem Ganjil Genap Menggunakan Metode K-Nearest Neighbor (Knn),” iKRAITH-INFORMATIKA, vol. 7, no. 2, pp. 165–169, 2022.

H. Rachmi, S. Suparni, and A. Al Kaafi, “Analisis Sentimen Sistem Ganjil Genap Kota Bogor,” J. ELTIKOM, vol. 5, no. 2, pp. 92–99, 2021, doi: 10.31961/eltikom.v5i2.429.

R. Amelia, D. Darmansah, N. S. Prastiwi, and M. E. Purbaya, “Impementasi Algoritma Naive Bayes Terhadap Analisis Sentimen Opini Masyarakat Indonesia Mengenai Drama Korea Pada Twitter,” JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 2, p. 338, 2022, doi: 10.30865/jurikom.v9i2.3895.

R. Mubarok, “Analisis Sentimen Pengguna Twitter Terhadap Kebijakan Pemberlakuan Pembatasan Sosial Berskala Besar (Psbb) Dengan Metode …,” J. Siliwangi Seri Sains dan Teknol., vol. 7, no. 1, pp. 19–24, 2021, [Online]. Available: http://jurnal.unsil.ac.id/index.php/jssainstek/article/view/3726

W. P. Anggraini and M. S. Utami, “Klasifikasi Sentimen Masyarakat Terhadap Kebijakan Kartu Pekerja Di Indonesia,” Fakt. Exacta, vol. 13, no. 4, p. 255, 2021, doi: 10.30998/faktorexacta.v13i4.7964.

R. Pinka et al., “Sentiment Analysis of Public Opinions on the Effectiveness of Online Learning Using NaÏve Bayer Algorithm,” J. Inf. Syst. Informatics Comput. , vol. 6, no. 1, pp. 273–279, 2022, doi: 10.52362/jisicom.v6i1.822.

F. D. Samuel, P. D. Atika, and S. Setiawati, “Analisis Sentimen Masyarakat Terhadap Perkuliahan Daring Di Twitter Menggunakan Algoritma Naive Bayes Dan Support Vector Machine,” J. Students‘ Res. Comput. Sci., vol. 4, no. 2, pp. 261–272, 2023, doi: 10.31599/jsrcs.v4i2.3253.

R. T. Aldisa and P. Maulana, “Analisis Sentimen Opini Masyarakat Terhadap Vaksinasi Booster COVID-19 Dengan Perbandingan Metode Naive Bayes, Decision Tree dan SVM,” Build. Informatics, Technol. Sci., vol. 4, no. 1, pp. 106–109, 2022, doi: 10.47065/bits.v4i1.1581.

Syahril Dwi Prasetyo, Shofa Shofiah Hilabi, and Fitri Nurapriani, “Analisis Sentimen Relokasi Ibukota Nusantara Menggunakan Algoritma Naïve Bayes dan KNN,” J. KomtekInfo, vol. 10, pp. 1–7, 2023, doi: 10.35134/komtekinfo.v10i1.330.

H. Faisal, A. Febriandirza, and F. N. Hasan, “Analisis Sentimen Terkait Ulasan Pada Aplikasi PLN Mobile Menggunakan Metode Support Vector Machine,” KESATRIA J. Penerapan Sist. Inf. (Komputer Manajemen), vol. 5, no. 1, pp. 303–312, 2024.

M. mahrus Zain, “Analisis Sentimen Pendapat Masyarakat Mengenai Vaksin Covid-19 Pada Media Sosial Twitter dengan Robustly Optimized BERT Pretraining Approach,” J. Komput. Terap., vol. 7, no. 2, pp. 280–289, 2021, doi: 10.35143/jkt.v7i2.4782.

N. L. W. S. R. Ginantra, C. P. Yanti, G. D. Prasetya, I. B. G. Sarasvananda, and I. K. A. G. Wiguna, “Analisis Sentimen Ulasan Villa di Ubud Menggunakan Metode Naive Bayes, Decision Tree, dan K-NN,” J. Nas. Pendidik. Tek. Inform., vol. 11, no. 3, pp. 205–215, 2022, doi: 10.23887/janapati.v11i3.49450.

D. Surya Sayogo, B. Irawan, and A. Bahtiar, “Analisis Sentimen Ulasan Instagram Di Google Play Store Menggunakan Algoritma Naïve Bayes,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 6, pp. 3314–3319, 2024, doi: 10.36040/jati.v7i6.8178.

Ernianti Hasibuan and Elmo Allistair Heriyanto, “Analisis Sentimen Pada Ulasan Aplikasi Amazon Shopping Di Google Play Store Menggunakan Naive Bayes Classifier,” J. Tek. dan Sci., vol. 1, no. 3, pp. 13–24, 2022, doi: 10.56127/jts.v1i3.434.

D. F. Salsabillah, D. E. Ratnawati, and N. Y. Setiawan, “Analisis Sentimen Ulasan Rumah Makan Menggunakan Perbandingan Algoritma Support Vector Machine dengan Naive bayes (Studi Kasus: Ayam Goreng Nelongso Cabang Singosari, Malang),” J. Teknol. Inf. dan Ilmu Komput., vol. 11, no. 1, pp. 107–116, 2024, doi: 10.25126/jtiik.20241117584.

N. R. Siahaan, R. Y. Tiffany, and S. R. E. Sinaga, “Analisis Sentimen Ulasan Aplikasi Media Sosial Whatsapp Menggunakan Metode Naive Bayes Classifier,” J. Ilm. Betrik, vol. 14, no. 02, pp. 343–354, 2023, [Online]. Available: https://ejournal.pppmitpa.or.id/index.php/betrik/article/view/104%0Ahttps://ejournal.pppmitpa.or.id/index.php/betrik/article/download/104/76

M. A. A. A. Solichin, “Analisis Sentimen MotoGP Mandalika Pada Twitter Menggunakan Metode Naïve Bayes,” J. Ticom Technol. Inf. Commun., vol. 11, no. Vol 11 No 1 (2022): Jurnal Ticom: Technology of Information and Communication, pp. 20–25, 2022, [Online]. Available: https://jurnal-ticom.jakarta.aptikom.or.id/index.php/Ticom/article/view/66/55

Q. A. A’yuniyah and M. Reza, “Penerapan Algoritma K-Nearest Neighbor Untuk Klasifikasi Jurusan Siswa Di Sma Negeri 15 Pekanbaru,” Indones. J. Inform. Res. Softw. Eng., vol. 3, no. 1, pp. 39–45, 2023, doi: 10.57152/ijirse.v3i1.484.

L. Legito et al., “Penerapan Algoritma K-Nearest Neighbor untuk Analisis Sentimen Terhadap Isu Khilafah dan Radikalisme di Indonesia,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 3, no. 2, pp. 324–330, 2023, doi: 10.57152/malcom.v3i2.893.

A. H. Yuanti, “Analisis Pengaruh Covid-19 Terhadap Kesehatan Mental dengan Visualisasi Data Rapidminer,” Gudang J. Multidisiplin Ilmu, vol. 2, pp. 183–187, 2024.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Sentiment Analisis Opini Masyarakat Sistem Ganjil Genap di Twitter Menggunakan Algoritma Naive Bayes Classifier dan Algoritma K-NN

Dimensions Badge

ARTICLE HISTORY


Published: 2024-08-31
Abstract View: 267 times
PDF Download: 108 times