Klasterisasi Pasien Rawat Jalan di Puskesmas dengan Menggunakan Metode Algoritma Clustering K-Means


Authors

  • Azkar Azkar Universitas Amikom Yogyakarta, Yogyakarta, Indonesia
  • Kusrini Kusrini Universitas Amikom Yogyakarta, Yogyakarta, Indonesia

DOI:

https://doi.org/10.30865/klik.v4i5.1832

Keywords:

Data mining; Algorithm; Clustering k-menas; RapidMiner; Outpatient patients

Abstract

The Aikmel Utara Public Health Center in Lombok Timur Regency began operating in mid-2019, but has never utilized patient data to obtain information as a basis for decision-making efforts to improve quality of health services and consequently enhance patient satisfaction. The target respondents patient satisfaction survey at the Public Health Center are visitors, the majority of whom are outpatient visitors. The purpose of this research is to group outpatient patients based on variables such as gender, age, participation status in the BPJS health insurance program and patient address, as well as diagnosis of the patient's disease using the k-means clustering algorithm method with the assistance of the RapidMiner application. Patient data totaling 1889 were grouped into 2 clusters, 3 clusters, 4 clusters, and 5 clusters, and evaluated using the Davies-Bouldin Index (DBI). The research results show that the number of clusters formed is 2, with cluster 1 consisting of 1570 data and cluster 2 consisting of 319 data. Cluster 1 is dominated by female patients (1074 or 68.4%), BPJS participants (819 or 52.2%), with the most common age group being adults (883 or 56.2%), and most of them are from Toya village (488 or 31.1%), with the most common diagnosis being acute respiratory infections (J06) (223 or 14.2%). Meanwhile, cluster 2 is dominated by female patients (205 or 64.3%), BPJS participants (202 or 63.3%), with the most common age group being adults (191 or 59.9%), and most of them are from Toya village (108 or 33.9%), with the most common diagnosis being pregnancy examinations (Z34) (29 or 9.1%). From these cluster results, it is obtained that the majority of outpatient visitors at the Aikmel Utara Public Health Center are from Toya village and are dominated by the adult age group and BPJS health insurance participants, with the most common disease being acute respiratory infections. It is hoped that this information can assist the Public Health Center in making decisions or policies related to health programs in its working area

Downloads

Download data is not yet available.

References

Kemkes. RI, Peraturan Menteri Kesehatan Nomor 31 tahun 2019 tentang Sistem Informasi Puskesmas. Jakarta, 2019.

Kemkes. RI, Peraturan Menteri Kesehatan Nomor 24 tahun 2022 tentang Rekam Medis. Jakarta, 2022.

WHO, “International Classification Of Diseases and Related Health Problems (Klasifikasi Statistik Internasional Mengenai Penyakit Dan Masalah Kesehatan Terkait),” Volume 2 I.2005.

Dinas Kesehatan. Lombok Timur, Profil Kesehatan Kabupaten Lombok Timur Tahun 2023. 2024.

Puskesmas. aikmel Utara, Laporan Tahunan Puskesmas Aikmel Utara Kabupaten Lombok Timur. Aikmel, 2024.

Kusrini and E. T. Luthfi, Algoritma Data Mining. Surabaya: CV. ANDI OFFSET (Penerbit Andi), 2009.

M. A. dan M. Nasir, Data Mining. Algoritma dan Implementasi. Yogyakarta: CV. ANDI OFFSET (Penerbit Andi), 2020.

H.N. Putra and D.P. Anisa, “Klasterisasi Data Rekam Medis Pada Diagnosa Penyakit Berdasarkan Usia Pasien Menggunakan Algoritma K-Means di Puskesmas Lubuk Alung,” vol. 3, no. 5, pp. 128–133, 2021.

T.A. Susanto, “Kelebihan dan Kekurangan Jenis-Jenis Clustering dalam Data Science,” 2023. https://blog.algorit.ma/jenis-clustering/#apa-itu-clustering

N.K. Zuhal, “Study Comparison K-Means Clustering dengan Algoritma Hierarchical Clustering,” vol. 1, pp. 200–205, 2022.

R. Adha, N. Nurhaliza, U. Sholeha, and M. Mustakim, “Perbandingan Algoritma DBSCAN dan K-Means Clustering untuk Pengelompokan Kasus Covid-19 di Dunia,” SITEKIN J. Sains, Teknol. dan Ind., vol. 18, no. 2, pp. 206–211, 2021.

M. Zubair, M. A. Iqbal, A. Shil, M. J. M. Chowdhury, M. A. Moni, and I. H. Sarker, “An Improved K-means Clustering Algorithm Towards an Efficient Data-Driven Modeling,” Ann. Data Sci., 2022, doi: 10.1007/s40745-022-00428-2.

J. W. & Sons, Data Science & Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data. Education Services, 2015.

D. Ariyanto and I. Resercher, “Jurnal Sistim Informasi dan Teknologi Data Mining Menggunakan Algoritma K-Means Untuk Klasifikasi Penyakit Infeksi Saluran Pernafasan Akut,” vol. 4, pp. 1–3, 2022, doi: 10.37034/jsisfotek.v4i1.117.

L. Masyfufah and I. Artikel, “Clustering Guna Menunjang Program Jaminan Balong Bendo Sidoarjo Clustering BPJS's Inpatients By Using K -Means Clustering Method to Support The National Health Insurance Program At Anwar Medika Hospital Balong Bendo Sidoarjo,” pp. 8–22, 2021.

N. Karolina, “Data Mining Pengelompokan Pasien Rawat Inap Peserta BPJS Menggunakan Metode Clustering ( Studi Kasus?: RSU . Bangkatan ),” pp. 47–53, 2021.

A. Darsani, M. Yetri, and M.G. Suryanata, “Penerapan Data Mining Untuk Mengelompokkan Pasien Pada Puskesmas Ngkeran Kutacane Menggunakan Algoritma K-Means Clustering,” vol. 4, no. 9, pp. 1–13, 2021.

H. Ahyar et al., Buku Metode Penelitian Kualitatif & Kuantitatif, no. March. 2020.

D.I.M. Reza Gustrianda, “Penerapan Data Mining Dalam Pemilihan Produk Unggulan dengan,” vol. 6, pp. 27–34, 2022, doi: 10.30865/mib.v6i1.3294.

I. Wahyudin, E. T. Tosida, and F. Andria, Teori dan Panduan Praktis Data Science dan Big Data, Pertama. Bogor: Lembaga Penelitian dan Pengabdian pada Masyarakat, Universitas Pakuan, 2019.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Klasterisasi Pasien Rawat Jalan di Puskesmas dengan Menggunakan Metode Algoritma Clustering K-Means

Dimensions Badge

ARTICLE HISTORY


Published: 2024-04-30
Abstract View: 425 times
PDF Download: 630 times

Issue

Section

Articles