Data Mining Classification Untuk Prediksi Jumlah Mahasiswa Aktif dan Cuti Angkatan 2020 Menggunakan Metode K-Nearest Neighbor
DOI:
https://doi.org/10.30865/klik.v4i5.1795Keywords:
Aktif and Leave; Data Mining; Classification; K-Nearest NeighborAbstract
Active students are students who attend lectures, while students on leave are students who do not attend lectures. To remain active, students must re-register at the start of the semester. In this study, researchers used student data from the class of 2020 sourced from Bina Insan University, Lubuklinggau City. The method used is data mining. Data mining is a term used to describe the discovery of knowledge in databases. Data will be analyzed using the Python programming language with the K-Nearest Neighbor algorithm. In the classification of active and leave students, an accuracy value of 89% was obtained
Downloads
References
S. Diansyah, “Klasifikasi Tingkat Kepuasan Pengguna dengan Menggunakan Metode K-Nearest Neighbour (KNN),” J. Sistim Inf. dan Teknol., vol. 4, pp. 7–12, 2022, doi: 10.37034/jsisfotek.v4i1.114.
H. Harianto and D. Rosiyadi, “Komparasi Algortima C4.5, Naïve Bayes dan k-Nearest Neighbor Sebagai Sistem Pendukung Keputusan Menaikkan Jumlah Peserta Didik,” J. Inform., vol. 7, no. 1, pp. 55–61, 2020, doi: 10.31311/ji.v7i1.7250.
A. Salam, F. B. Nugroho, and J. Zeniarja, “Implementasi Algoritma K-Nearest Neighbor Berbasis Forward Selection Untuk Prediksi Mahasiswa Non Aktif Universitas Dian Nuswantoro Semarang,” JOINS (Journal Inf. Syst., vol. 5, no. 1, pp. 69–76, 2020, doi: 10.33633/joins.v5i1.3351.
A. Damuri, U. Riyanto, H. Rusdianto, and M. Aminudin, “Implementasi Data Mining dengan Algoritma Naïve Bayes Untuk Klasifikasi Kelayakan Penerima Bantuan Sembako,” JURIKOM (Jurnal Ris. Komputer), vol. 8, no. 6, p. 219, 2021, doi: 10.30865/jurikom.v8i6.3655.
Heliyanti Susana, “Penerapan Model Klasifikasi Metode Naive Bayes Terhadap Penggunaan Akses Internet,” J. Ris. Sist. Inf. dan Teknol. Inf., vol. 4, no. 1, pp. 1–8, 2022, doi: 10.52005/jursistekni.v4i1.96.
D. Irawan and Z. Novianto, “Perancangan E-Learning Pada Sman 1 Kota Lubuklinggau Menggunakan Framework Codeigniter (Ci),” J. Digit. Teknol. Inf., vol. 3, no. 2, p. 53, 2020, doi: 10.32502/digital.v3i2.2690.
R. Shinta, P. Fairul, and G. Saputri, “Penerapan Data Mining Untuk Prediksi Penjualan Cat Menggunakan Metode Naïve ( Studi Kasus?: Mitra 10 Gading Serpong ),” Log. J. Ilmu Komput. dan …, vol. 1, no. 3, pp. 571–578, 2023.
M. Mega and J. Jasmir, “Prediksi Masa Studi Mahasiswa Unama Jambi Menggunakan Metode Algoritma C4.5,” J. Manaj. Sist. Inf., vol. 8, no. 1, pp. 140–151, 2023, doi: 10.33998/jurnalmsi.2023.8.1.770.
A. Baita and N. Cahyono, “Analisis Sentimen Mengenai Vaksin Sinovac Menggunakan Algoritma Support Vector Machine (Svm) Dan K-Nearest Neighbor (Knn),” Infos, vol. 4, no. 2, pp. 42–42, 2021.
J. Astri, J. Karman, and N. K. Daulay, “Prediksi Kelulusan Mahasiswa Menggunakan Metode K-Nearest Neigbor (KNN) pada Fakultas Ilmu Teknik, Univeritas Bina Insan,” J. Ris. Sist. Inf. Dan Tek. Inform., vol. 8, pp. 169–173, 2022.
A. P. Wibowo, W. Darmawan, and N. Amalia, “Komparasi Metode Naïve Bayes Dan K-Nearest Neighbor Terhadap Analisis Sentimen Pengguna Aplikasi Pedulilindungi,” IC-Tech, vol. 17, no. 1, pp. 18–23, 2022, doi: 10.47775/ictech.v17i1.234.
E. Irawan and I. Gunawan, “Penerapan C4.5 pada Keaktifan Mahasiswa dalam Pengumpulan Berkas di Biro Akademik,” REMIK (Riset dan E-Jurnal Manaj. Inform. Komputer), vol. 3, no. 2, p. 87, 2019, doi: 10.33395/remik.v3i2.10132.
D. Cahyanti, A. Rahmayani, and S. A. Husniar, “Analisis performa metode Knn pada Dataset pasien pengidap Kanker Payudara,” Indones. J. Data Sci., vol. 1, no. 2, pp. 39–43, 2020, doi: 10.33096/ijodas.v1i2.13.
R. A. Soleha, “Klasifikasi Kemampuan Ekonomi Calon Siswa Baru dengan Metode K-Nearest Neighbor pada SMA Negeri 1 Musi Rawas,” Jurasik (Jurnal Ris. Sist. Inf. dan Tek. Inform., vol. 8, no. 1, pp. 62–69, 2023.
Q. A. A’yuniyah and M. Reza, “Penerapan Algoritma K-Nearest Neighbor Untuk Klasifikasi Jurusan Siswa Di Sma Negeri 15 Pekanbaru,” Indones. J. Inform. Res. Softw. Eng., vol. 3, no. 1, pp. 39–45, 2023, doi: 10.57152/ijirse.v3i1.484.
M. M. Baharuddin, H. Azis, and T. Hasanuddin, “Analisis Performa Metode K-Nearest Neighbor Untuk Identifikasi Jenis Kaca,” Ilk. J. Ilm., vol. 11, no. 3, pp. 269–274, 2019, doi: 10.33096/ilkom.v11i3.489.269-274.
S. K. P. Loka and A. Marsal, “Perbandingan Algoritma K-Nearest Neighbor dan Naïve Bayes Classifier untuk Klasifikasi Status Gizi Pada Balita,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 3, no. 1, pp. 8–14, 2023, doi: 10.57152/malcom.v3i1.474.
A. A. D. Halim and S. Anraeni, “Analisis Klasifikasi Dataset Citra Penyakit Pneumonia menggunakan Metode K-Nearest Neighbor (KNN),” Indones. J. Data Sci., vol. 2, no. 1, pp. 01–12, 2021, doi: 10.33096/ijodas.v2i1.23.
A. M. Argina, “Penerapan Metode Klasifikasi K-Nearest Neigbor pada Dataset Penderita Penyakit Diabetes,” Indones. J. Data Sci., vol. 1, no. 2, pp. 29–33, 2020, doi: 10.33096/ijodas.v1i2.11.
Z. Zulfikar, E. S. Podungge, M. I. Saleh, and ..., “Penerapan Data Mining Untuk Memprediksi Tingkat Kelulusan Siswa Menggunakan Algoritma Neural Network,” J. Elektron. Sist. …, vol. 5, no. 1, pp. 7–13, 2022.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Data Mining Classification Untuk Prediksi Jumlah Mahasiswa Aktif dan Cuti Angkatan 2020 Menggunakan Metode K-Nearest Neighbor
ARTICLE HISTORY
Issue
Section
Copyright (c) 2024 Sekar Ayu Fitria, Harma Oktafia Lingga Wijaya, Davit Irawan

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).