Klasifikasi Kecanduan Bermain Game online Pada Remaja Menggunakan Metode Naïve Bayes Classifier Berbasis Website
DOI:
https://doi.org/10.30865/klik.v4i5.1782Keywords:
Online Games; Classification; Naïve Bayes; Addiction; AccuracyAbstract
The use of electronic devices such as cellphones, laptops, and others is often found for various reasons, including playing online games. Online games are very popular because they can relieve stress and can be played by various ages, one of which is teenagers aged 10-19 years. However, online games can be detrimental to teenagers. If a teenager plays online games for a long time, that teenager will become dependent on online games. This research creates a system that can help teenagers find out their level of addiction to online games, so that teenagers can overcome their addiction problems. This system classifies addiction to playing online games in teenagers with mild, moderate and severe levels using the Naïve Bayes Classifier method. This system can help teenagers control themselves when playing online games. In determining the level of online game addiction, 5 attributes are used, namely age, gender, place of play, type of game, and length of play. Testing with 150 data and tested with nine comparisons of training data and test data, namely 10:90, 20:80, 30:70, 40:60, 50:50, 60:40, 70:30, 80:20, and 90: 10. Testing is carried out using a confusion matrix to produce accuracy, precision, recall and error rate values. The highest accuracy value is found in comparing training data and test data of 40:60. Accuracy results were 93%, precision was 90%, recall was 89%, and error rate was 6.67%.
Downloads
References
S. K. Zakiah, I., Ritanti, N., Kep, M., & Kom, “Kecanduan Game Online Pada Remaja Dan Penanganannya,” Media Sains Indones., 2021.
S. Irawan and Di. Siska W., “Faktor-Faktor yang Mempengaruhi Kecanduan Game Online Peserta Didik,” J. Konseling Gusjigang, vol. 7, no. 1, pp. 9–19, 2021.
T. W. Utami and H. Atik, “Kecanduan Game Online Berhubungan Dengan Penyesuaian Sosial pada Remaja Online Addiction Games Are Related To Social Adjustments in Adolescents,” J. Keperawatan, vol. 12, no. 1, pp. 17–22, 2020.
I. A. Rahman, D. Ariani, and N. Ulfa, “Tingkat Kecanduan Game Online Pada Remaja,” J. Mutiara Ners, vol. 5, no. 2, pp. 85–90, 2022, doi: 10.51544/jmn.v5i2.2438.
W. V. S. Sinsu Erik, “HUBUNGAN DURASI BERMAIN GAME ONLINE DENGAN KESEHATAN MENTAL PADA REMAJA PRIA,” J. Ilm. Kesehat. Jiwa, vol. 2, No. 2, pp. 69–76, 2020.
N. Asmiati, S. Informasi, S. Tinggi, M. Informatika, D. Komputer, and N. Mandiri, “Penerapan Algoritma Naive Bayes Untuk Mengklasifikasi Pengaruh Negatif Game Online Bagi Remaja Milenial (Application of the Naive Bayes Algorithm to Classify the Negative Effects of Online Games on Millennial Adolescents),” J. Teknol. Inf. dan Multimed., vol. 2, no. 3, pp. 141–149, 2020.
A. P. Wibawa, M. Guntur, A. Purnama, M. Fathony Akbar, and F. A. Dwiyanto, “Metode-metode Klasifikasi,” Pros. Semin. Ilmu Komput. dan Teknol. Inf., vol. 3, no. 1, 2018.
M. P. S. Luqman Affandi, Agung Nugroho Pramudhita, “SISTEM PAKAR KLASIFIKASI KECANDUAN GADGET MENGGUNAKAN TEORI ARTHURT T. HOVART DENGAN METODE NAIVE BAYES CLASSIFIER UNTUK ANAK SEKOLAH DASAR,” Semin. Inform. Apl. POLINEMA, 2020.
Y. Prastyo, P. Eosina, and F. Fatimah, “PEMBAGIAN TINGKAT KECANDUAN GAME ONLINE MENGGUNAKAN K-MEANS CLUSTERING SERTA KORELASINYA TERHADAP PRESTASI AKADEMIK,” Bogor, 2017. Accessed: Jul. 09, 2023. [Online]. Available: journal.uny.ac.id
A. Ridwan, “Penerapan Algoritma Naïve Bayes Untuk Klasifikasi Penyakit Diabetes Mellitus,” J. SISKOM-KB (Sistem Komput. dan Kecerdasan Buatan), vol. 4, no. 1, pp. 15–21, 2020, doi: 10.47970/siskom-kb.v4i1.169.
A. A. A. Arifin, W. Handoko, and Z. Efendi, “Implementasi Metode Naive Bayes Untuk Klasifikasi Penerima Program Keluarga Harapan,” J-Com (Journal Comput., vol. 2, no. 1, pp. 21–26, 2022, doi: 10.33330/j-com.v2i1.1577.
G. P. Kawani, “Implementasi Naive Bayes Untuk Menentukan Wadah Limbah B3 Sesuai Karakteristik,” J. INISTA, vol. 1, no. 2, pp. 73–81, 2019.
S. H. S. R. H. Ellif, “KLASIFIKASI KEMATANGAN PEPAYA MENGGUNAKAN RUANG WARNAHSV DAN METODE NAIVE BAYES CLASSIFIER,” J. Comput. dan Apl., vol. 9, no. 1, 2021.
C. Fadlan, S. Ningsih, and A. P. Windarto, “Penerapan Metode Naïve Bayes Dalam Klasifikasi Kelayakan Keluarga Penerima Beras Rastra,” J. Tek. Inform. Musirawas, vol. 3, no. 1, p. 1, 2018, doi: 10.32767/jutim.v3i1.286.
N. Ramadhani and N. Fajarianto, “Sistem Informasi Evaluasi Perkuliahan dengan Sentimen Analisis Menggunakan Naïve Bayes dan Smoothing Laplace,” J. Sist. Inf. Bisnis, vol. 10, no. 2, 2020.
Indah Listiowarni Eka Rahayu Setyaningsih, “Analisis Kinerja Smoothing pada Naive Bayes untuk Pengkategorian Soal Ujian Indah Listiowarni [1] , Eka Rahayu Setyaningsih [2],” 2018.
Rayuwati, Husna Gemasih, and Irma Nizar, “IMPLEMENTASI AlGORITMA NAIVE BAYES UNTUK MEMPREDIKSI TINGKAT PENYEBARAN COVID,” Jural Ris. Rumpun Ilmu Tek., vol. 1, no. 1, pp. 38–46, 2022, doi: 10.55606/jurritek.v1i1.127.
S. Lutfiwati, “Memahami Kecanduan Game Online Melalui Pendekatan Neurobiologi,” ANFUSINA J. Psychol., vol. 1, no. 1, 2018.
D. Handayani, “Faktor-Faktor yang Mempengaruhi Kecanduan Game Online pada Remaja Kecamatan Sungai Geringging Kabupaten Padang Pariaman Menggunakan Analisis Regresi Logistik,” J. Konseling Gusjigang, vol. 7, no. 1, pp. 9–19, 2018.
A. Kristiawan and K. T. Yunanto, “Faktor - Faktor Yang Berpengaruh Terhadap Kecanduan Game Online,” urnal Psikol. Kreat. Inov., vol. 1, no. 1, pp. 14–24, 2021, [Online]. Available: https://medium.com/@arifwicaksanaa/pengertian-use-case-a7e576e1b6bf
E. Novrialdy, “Kecanduan Game Online pada Remaja: Dampak dan Penjegahannya,” Bul. Psikol., vol. 27, no. 2, pp. 148–158, 2019.
A. W. Detrinal Putra, “Prediksi Keputusan Minat Penjurusan Siswa SMA Yadika 5 Menggunakan Algoritma Naïve Bayes,” Semin. Nas. Ris. Inf. Sci., vol. 2, 2020.
M. I. Fikri, T. S. Sabrila, and Y. Azhar, “Perbandingan Metode Naïve Bayes dan Support Vector Machine pada Analisis Sentimen Twitter,” SMATIKA J., vol. 10, no. 2, pp. 71–76, 2020.
P. W. Kastawan, D. M. Wiharta, and M. Sudarma, “Implementasi Algoritma C5.0 pada Penilaian Kinerja Pegawai Negeri Sipil,” Maj. Ilm. Teknol. Elektro, vol. 17, no. 3, p. 371, 2018, doi: 10.24843/mite.2018.v17i03.p11.
N. M. A. J. Astari, Dewa Gede Hendra Divayana, and Gede Indrawan, “Analisis Sentimen Dokumen Twitter Mengenai Dampak Virus Corona Menggunakan Metode Naive Bayes Classifier,” J. Sist. dan Inform., vol. 15, no. 1, pp. 27–29, 2020, doi: 10.30864/jsi.v15i1.332.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Klasifikasi Kecanduan Bermain Game online Pada Remaja Menggunakan Metode Naïve Bayes Classifier Berbasis Website
ARTICLE HISTORY
Issue
Section
Copyright (c) 2024 Tika Suci Pania, Rahmi Hidayati, Kasliono Kasliono

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).