Analisis Sentimen Aplikasi Spotify Pada Ulasan Pengguna di Google Play Store Menggunakan Metode Support Vector Machine
DOI:
https://doi.org/10.30865/klik.v4i5.1762Keywords:
Sentiment Analysis; Spotify Application; SVMAbstract
The Spotify app makes it easy for users to listen to their favorite songs. Usually the Spotify App is accessed on a smartphone so that it can be played at any time. Today's digital generation can use technology in the form of music, music can affect human feelings and thoughts. The increasing number of Spotify application users on the Google Play Store, raises a variety of user reviews of the application. These reviews can be in the form of positive or negative comments. Addressing this, it is necessary to conduct sentiment analysis in order to provide a deeper understanding of user perceptions and grouping of user reviews of the Spotify application. Sentiment analysis is a case study of opinions, feelings, and emotions expressed in texs. The number of diverse reviews requires classification of reviews into positive and negative classes using the Support Vector Machine method. The purpose of this research is so that it can be examined to what extent the positive and negative reviews can be used as a reference in building the Spotify application to be even better. Object classification is done based on training data that uses the closest distance or similarity to the object for convenience. Using 5000 relevant review data from December 2023 to January 2024. After the labelling stage is carried out into positive and negative classes, there are 3193 positive and 1347 negative comments. The results of sentiment analysis testing using the Support Vector Machine method resulted in an accuracy of 85%, precision 86%, recall 92% and f1-score 89%.
Downloads
References
R. Ardhani et al., “ANALISIS SENTIMEN TERHADAP LAYANAN APLIKASI GRAB INDONESIA MENGGUNAKAN METODE NAÏVE BAYES,” vol. 8, no. 1, pp. 303–309, 2024.
M. K. Khoirul Insan, U. Hayati, and O. Nurdiawan, “Analisis Sentimen Aplikasi Brimo Pada Ulasan Pengguna Di Google Play Menggunakan Algoritma Naive Bayes,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 1, pp. 478–483, 2023, doi: 10.36040/jati.v7i1.6373.
N. Faridhotul Hidayah, K. Paranita Kartika R., and S. Nur Budiman, “Penerapan Metode Naive Bayes Dalam Analisis Sentimen Aplikasi Sentuh Tanahku Pada Google Play,” JATI (Jurnal Mhs. Tek. Inform., vol. 6, no. 2, pp. 679–683, 2022, doi: 10.36040/jati.v6i2.5610.
M. Afdal and L. R. Elita, “Penerapan Text Mining Pada Aplikasi Tokopedia Menggunakan Algoritma K-Nearest Neighbor,” J. Ilm. Rekayasa dan Manaj. Sist. Inf., vol. 8, no. 1, p. 78, 2022, doi: 10.24014/rmsi.v8i1.16595.
A. S. Rahayu, A. Fauzi, and R. Rahmat, “Komparasi Algoritma Naïve Bayes Dan Support Vector Machine (SVM) Pada Analisis Sentimen Spotify,” J. Sist. Komput. dan Inform., vol. 4, no. 2, p. 349, 2022, doi: 10.30865/json.v4i2.5398.
O. Bangun, H. Mawengkang, and S. Efendi, “Metode Algoritma Support Vector Machine (SVM) Linier Dalam Memprediksi Kelulusan Mahasiswa,” J. Media Inform. Budidarma, vol. 6, no. 4, p. 2006, 2022, doi: 10.30865/mib.v6i4.4572.
M. D. Hendriyanto, A. A. Ridha, and U. Enri, “Analisis Sentimen Ulasan Aplikasi Mola Pada Google Play Store Menggunakan Algoritma Support Vector Machine,” INTECOMS J. Inf. Technol. Comput. Sci., vol. 5, no. 1, pp. 1–7, 2022, doi: 10.31539/intecoms.v5i1.3708.
R. Risnantoyo, A. Nugroho, and K. Mandara, “Sentiment Analysis on Corona Virus Pandemic Using Machine Learning Algorithm,” J. Informatics Telecommun. Eng., vol. 4, no. 1, pp. 86–96, 2020, doi: 10.31289/jite.v4i1.3798.
M. Hudha, E. Supriyati, and T. Listyorini, “Analisis Sentimen Pengguna Youtube Terhadap Tayangan #Matanajwamenantiterawan Dengan Metode Naïve Bayes Classifier,” JIKO (Jurnal Inform. dan Komputer), vol. 5, no. 1, pp. 1–6, 2022, doi: 10.33387/jiko.v5i1.3376.
A. FATIHIN, “Analisis Sentimen Terhadap Ulasan Aplikasi Mobile Menggunakan Metode Support Vector Machine (Svm) Dan Pendekatan Lexicon Based,” p. 103, 2022.
Friska Aditia Indriyani, Ahmad Fauzi, and Sutan Faisal, “Analisis sentimen aplikasi tiktok menggunakan algoritma naïve bayes dan support vector machine,” TEKNOSAINS J. Sains, Teknol. dan Inform., vol. 10, no. 2, pp. 176–184, 2023, doi: 10.37373/tekno.v10i2.419.
A. Firdaus and W. I. Firdaus, “Text Mining Dan Pola Algoritma Dalam Penyelesaian Masalah Informasi?: (Sebuah Ulasan),” J. JUPITER, vol. 13, no. 1, p. 66, 2021.
A. I. Tanggraeni and M. N. N. Sitokdana, “Analisis Sentimen Aplikasi E-Government pada Google Play Menggunakan Algoritma Naïve Bayes,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 9, no. 2, pp. 785–795, 2022, doi: 10.35957/jatisi.v9i2.1835.
H. Mukhtar, J. Al Amien, and M. A. Rucyat, “Filtering Spam Email menggunakan Algoritma Naïve Bayes,” J. CoSciTech (Computer Sci. Inf. Technol., vol. 3, no. 1, pp. 9–19, 2022, doi: 10.37859/coscitech.v3i1.3652.
P. Arsi and R. Waluyo, “Analisis Sentimen Wacana Pemindahan Ibu Kota Indonesia Menggunakan Algoritma Support Vector Machine (SVM),” J. Teknol. Inf. dan Ilmu Komput., vol. 8, no. 1, p. 147, 2021, doi: 10.25126/jtiik.0813944.
J. A. Septian, T. M. Fachrudin, and A. Nugroho, “Analisis Sentimen Pengguna Twitter Terhadap Polemik Persepakbolaan Indonesia Menggunakan Pembobotan TF-IDF dan K-Nearest Neighbor,” J. Intell. Syst. Comput., vol. 1, no. 1, pp. 43–49, 2019, doi: 10.52985/insyst.v1i1.36.
P. M. Nirmala Dharmapatni and N. L. P. Merawati, “Penerapan Algoritma Support Vector Machine Dalam Sentimen Analisis Terkait Kenaikan Tarif BPJS Kesehatan,” J. Bumigora Inf. Technol., vol. 2, no. 2, pp. 105–112, 2020, doi: 10.30812/bite.v2i2.904.
S. A. Aaputra, Didi Rosiyadi, Windu Gata, and Syepry Maulana Husain, “Sentiment Analysis Analysis of E-Wallet Sentiments on Google Play Using the Naive Bayes Algorithm Based on Particle Swarm Optimization,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 3, no. 3, pp. 377–382, 2019, doi: 10.29207/resti.v3i3.1118.
S. N. Hakim, “ANALISIS SENTIMEN PERSEPSI PENGGUNA MYINDIHOME MENGGUNAKAN METODE SUPPORT VECTOR MACHINE (SVM) DAN NAÏVE BAYES CLASSIFIER (NBC) TUGAS,” p. 6, 2021.
Y. Femilia Nugraini, R. Rohmat Saedudin, and R. Andreswari, “Implementasi Data Mining Dalam Kasus Mental Health Pada Sosial Media Twitter Menggunakan Metode Naive Bayes,” e-Proceeding Eng., vol. 8, no. 5, pp. 9260–9265, 2021, [Online]. Available: https://repository.telkomuniversity.ac.id/pustaka/files/170554/jurnal_eproc/implementasi-data-mining-dalam-kasus-mental-health-pada-sosial-media-twitter-menggunakan-metode-naive-bayes.pdf
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Analisis Sentimen Aplikasi Spotify Pada Ulasan Pengguna di Google Play Store Menggunakan Metode Support Vector Machine
ARTICLE HISTORY
Issue
Section
Copyright (c) 2024 Cindi Wulandari, Lukman Sunardi, Hasbiana Hasbiana

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).