Analisis Sentimen Aplikasi Spotify Pada Ulasan Pengguna di Google Play Store Menggunakan Metode Support Vector Machine


Authors

  • Cindi Wulandari Universitas Bina Insan, Lubuk Linggau, Indonesia
  • Lukman Sunardi Universitas Bina Insan, Lubuk Linggau, Indonesia
  • Hasbiana Hasbiana Universitas Bina Insan, Lubuk Linggau, Indonesia

DOI:

https://doi.org/10.30865/klik.v4i5.1762

Keywords:

Sentiment Analysis; Spotify Application; SVM

Abstract

The Spotify app makes it easy for users to listen to their favorite songs. Usually the Spotify App is accessed on a smartphone so that it can be played at any time.  Today's digital generation can use technology in the form of music, music can affect human feelings and thoughts. The increasing number of Spotify application users on the Google Play Store, raises a variety of user reviews of the application. These reviews can be in the form of positive or negative comments. Addressing this, it is necessary to conduct sentiment analysis in order to provide a deeper understanding of user perceptions and grouping of user reviews of the Spotify application. Sentiment analysis is a case study of opinions, feelings, and emotions expressed in texs. The number of diverse reviews requires classification of reviews into positive and negative classes using the Support Vector Machine method. The purpose of this research is so that it can be examined to what extent the positive and negative reviews can be used as a reference in building the Spotify application to be even better. Object classification is done based on training data that uses the closest distance or similarity to the object for convenience. Using 5000 relevant review data from December 2023 to January 2024. After the labelling stage is carried out into positive and negative classes, there are 3193 positive and 1347 negative comments. The results of sentiment analysis testing using the Support Vector Machine method resulted in an accuracy of 85%, precision 86%, recall 92% and f1-score 89%.

Downloads

Download data is not yet available.

References

R. Ardhani et al., “ANALISIS SENTIMEN TERHADAP LAYANAN APLIKASI GRAB INDONESIA MENGGUNAKAN METODE NAÏVE BAYES,” vol. 8, no. 1, pp. 303–309, 2024.

M. K. Khoirul Insan, U. Hayati, and O. Nurdiawan, “Analisis Sentimen Aplikasi Brimo Pada Ulasan Pengguna Di Google Play Menggunakan Algoritma Naive Bayes,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 1, pp. 478–483, 2023, doi: 10.36040/jati.v7i1.6373.

N. Faridhotul Hidayah, K. Paranita Kartika R., and S. Nur Budiman, “Penerapan Metode Naive Bayes Dalam Analisis Sentimen Aplikasi Sentuh Tanahku Pada Google Play,” JATI (Jurnal Mhs. Tek. Inform., vol. 6, no. 2, pp. 679–683, 2022, doi: 10.36040/jati.v6i2.5610.

M. Afdal and L. R. Elita, “Penerapan Text Mining Pada Aplikasi Tokopedia Menggunakan Algoritma K-Nearest Neighbor,” J. Ilm. Rekayasa dan Manaj. Sist. Inf., vol. 8, no. 1, p. 78, 2022, doi: 10.24014/rmsi.v8i1.16595.

A. S. Rahayu, A. Fauzi, and R. Rahmat, “Komparasi Algoritma Naïve Bayes Dan Support Vector Machine (SVM) Pada Analisis Sentimen Spotify,” J. Sist. Komput. dan Inform., vol. 4, no. 2, p. 349, 2022, doi: 10.30865/json.v4i2.5398.

O. Bangun, H. Mawengkang, and S. Efendi, “Metode Algoritma Support Vector Machine (SVM) Linier Dalam Memprediksi Kelulusan Mahasiswa,” J. Media Inform. Budidarma, vol. 6, no. 4, p. 2006, 2022, doi: 10.30865/mib.v6i4.4572.

M. D. Hendriyanto, A. A. Ridha, and U. Enri, “Analisis Sentimen Ulasan Aplikasi Mola Pada Google Play Store Menggunakan Algoritma Support Vector Machine,” INTECOMS J. Inf. Technol. Comput. Sci., vol. 5, no. 1, pp. 1–7, 2022, doi: 10.31539/intecoms.v5i1.3708.

R. Risnantoyo, A. Nugroho, and K. Mandara, “Sentiment Analysis on Corona Virus Pandemic Using Machine Learning Algorithm,” J. Informatics Telecommun. Eng., vol. 4, no. 1, pp. 86–96, 2020, doi: 10.31289/jite.v4i1.3798.

M. Hudha, E. Supriyati, and T. Listyorini, “Analisis Sentimen Pengguna Youtube Terhadap Tayangan #Matanajwamenantiterawan Dengan Metode Naïve Bayes Classifier,” JIKO (Jurnal Inform. dan Komputer), vol. 5, no. 1, pp. 1–6, 2022, doi: 10.33387/jiko.v5i1.3376.

A. FATIHIN, “Analisis Sentimen Terhadap Ulasan Aplikasi Mobile Menggunakan Metode Support Vector Machine (Svm) Dan Pendekatan Lexicon Based,” p. 103, 2022.

Friska Aditia Indriyani, Ahmad Fauzi, and Sutan Faisal, “Analisis sentimen aplikasi tiktok menggunakan algoritma naïve bayes dan support vector machine,” TEKNOSAINS J. Sains, Teknol. dan Inform., vol. 10, no. 2, pp. 176–184, 2023, doi: 10.37373/tekno.v10i2.419.

A. Firdaus and W. I. Firdaus, “Text Mining Dan Pola Algoritma Dalam Penyelesaian Masalah Informasi?: (Sebuah Ulasan),” J. JUPITER, vol. 13, no. 1, p. 66, 2021.

A. I. Tanggraeni and M. N. N. Sitokdana, “Analisis Sentimen Aplikasi E-Government pada Google Play Menggunakan Algoritma Naïve Bayes,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 9, no. 2, pp. 785–795, 2022, doi: 10.35957/jatisi.v9i2.1835.

H. Mukhtar, J. Al Amien, and M. A. Rucyat, “Filtering Spam Email menggunakan Algoritma Naïve Bayes,” J. CoSciTech (Computer Sci. Inf. Technol., vol. 3, no. 1, pp. 9–19, 2022, doi: 10.37859/coscitech.v3i1.3652.

P. Arsi and R. Waluyo, “Analisis Sentimen Wacana Pemindahan Ibu Kota Indonesia Menggunakan Algoritma Support Vector Machine (SVM),” J. Teknol. Inf. dan Ilmu Komput., vol. 8, no. 1, p. 147, 2021, doi: 10.25126/jtiik.0813944.

J. A. Septian, T. M. Fachrudin, and A. Nugroho, “Analisis Sentimen Pengguna Twitter Terhadap Polemik Persepakbolaan Indonesia Menggunakan Pembobotan TF-IDF dan K-Nearest Neighbor,” J. Intell. Syst. Comput., vol. 1, no. 1, pp. 43–49, 2019, doi: 10.52985/insyst.v1i1.36.

P. M. Nirmala Dharmapatni and N. L. P. Merawati, “Penerapan Algoritma Support Vector Machine Dalam Sentimen Analisis Terkait Kenaikan Tarif BPJS Kesehatan,” J. Bumigora Inf. Technol., vol. 2, no. 2, pp. 105–112, 2020, doi: 10.30812/bite.v2i2.904.

S. A. Aaputra, Didi Rosiyadi, Windu Gata, and Syepry Maulana Husain, “Sentiment Analysis Analysis of E-Wallet Sentiments on Google Play Using the Naive Bayes Algorithm Based on Particle Swarm Optimization,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 3, no. 3, pp. 377–382, 2019, doi: 10.29207/resti.v3i3.1118.

S. N. Hakim, “ANALISIS SENTIMEN PERSEPSI PENGGUNA MYINDIHOME MENGGUNAKAN METODE SUPPORT VECTOR MACHINE (SVM) DAN NAÏVE BAYES CLASSIFIER (NBC) TUGAS,” p. 6, 2021.

Y. Femilia Nugraini, R. Rohmat Saedudin, and R. Andreswari, “Implementasi Data Mining Dalam Kasus Mental Health Pada Sosial Media Twitter Menggunakan Metode Naive Bayes,” e-Proceeding Eng., vol. 8, no. 5, pp. 9260–9265, 2021, [Online]. Available: https://repository.telkomuniversity.ac.id/pustaka/files/170554/jurnal_eproc/implementasi-data-mining-dalam-kasus-mental-health-pada-sosial-media-twitter-menggunakan-metode-naive-bayes.pdf


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Analisis Sentimen Aplikasi Spotify Pada Ulasan Pengguna di Google Play Store Menggunakan Metode Support Vector Machine

Dimensions Badge

ARTICLE HISTORY


Published: 2024-04-30
Abstract View: 1008 times
PDF Download: 1217 times

Issue

Section

Articles