Perbandingan Klasifikasi Citra CT-Scan Kanker Paru-Paru Menggunakan Contrast Stretching Pada CNN dengan EfficientNet-B0
DOI:
https://doi.org/10.30865/klik.v4i3.1448Keywords:
Lung Cancer; CNN; EfficientNet-B0; Classification; Contrast StretchingAbstract
Data from the World Health Organization (WHO) indicates that in 2020, approximately 10 million people died from cancer. Smoking has been identified as a primary factor causing lung cancer, as cigarettes contain over 60 toxic substances that can trigger the development of the disease. The rate of lung cancer has rapidly increased due to excessive cigarette consumption. Detecting nodules in the lungs typically takes about 10-30 minutes. In this study, a Convolutional Neural Network (CNN) algorithm with EfficientNet-B0 architecture is employed to classify lung cancer. The preprocessing process involves contrast stretching, and various hyperparameter optimization techniques such as Adam, Adagrad, and SGD are used to enhance the CNN's performance. Average pooling with output dense layers of 64, 32, 16, 1 is utilized. Performance analysis is conducted using a confusion matrix. The highest classification results are achieved using the ADAM optimizer with a learning rate of 0.01, where accuracy reaches 72.48%, precision is 71.52%, recall is 64.2%, and the F1 score is 64.76%. Meanwhile, results obtained from the original dataset show differences. The highest classification result is obtained using the ADAM optimizer with a learning rate of 0.01, achieving an accuracy of 64.22%, precision of 52.69%, recall of 50.52%, and an F1 score of 43.51%. These results indicate that the use of contrast stretching in lung cancer classification preprocessing is highly effective in improving accuracy
Downloads
References
W. H. Organization, “Cancer,” World Health Organization, 2022. https://www.who.int/news-room/fact-sheets/detail/cancer (accessed Jan. 06, 2023).
K. Kesetahan, “Penyakit Kanker di Indonesia Berada Pada Urutan 8 di Asia Tenggara dan Urutan 23 di Asia,” p2p.kemkes.go.id, 2019. http://p2p.kemkes.go.id/penyakit-kanker-di-indonesia-berada-pada-urutan-8-di-asia-tenggara-dan-urutan-23-di-asia/ (accessed Jun. 01, 2023).
E. Pranita, “Situasi Kanker Paru di Indonesia Saat Ini, Prevalensi Kematian Meningkat,” Kompas.com, 2021. https://www.kompas.com/sains/read/2021/12/10/183100723/situasi-kanker-paru-di-indonesia-saat-ini-prevalensi-kematian-meningkat?page=all (accessed Dec. 16, 2022).
D. Pittara, “Penyebab Kanker Paru-paru Kanker Paru-Paru,” alodokter.com, 2022. https://www.alodokter.com/kanker-paru-paru/penyebab (accessed Jan. 06, 2023).
N. Aliyah, E. Pranggono, and B. Andriyoko, “Kanker Paru: Sebuah Kajian Singkat,” Indones. J. Chest Emerg. Med., vol. 4, no. 1, pp. 28–32, 2016.
M. Keluarga, “Fakta Seputar Kanker Paru: Penyebab, Gejala, dan Pengobatan,” mitra keluarga, 2022. https://www.mitrakeluarga.com/artikel/artikel-kesehatan/kanker-paru (accessed Dec. 27, 2022).
I. W. A. Wijaya Kusuma and A. Kusumadewi, “Penerapan Metode Contrast Stretching, Histogram Equalization Dan Adaptive Histogram Equalization Untuk Meningkatkan Kualitas Citra Medis Mri,” Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 11, no. 1, pp. 1–10, 2020, doi: 10.24176/simet.v11i1.3153.
N. Jawas and I. W. B. Sentana, “Deteksi Lung Nodule Otomatis dari Citra Medis Computed Tomography ( CT ) Scan dengan Operasi Morfology dan SVM,” J. Sist. Dan Inform., vol. 12, no. 2, pp. 140–148, 2018.
dr. Rizal Fadli, “Beginilah Cara CT Scan Mendeteksi Kanker Lebih Akurat,” halodoc, 2019. https://www.halodoc.com/artikel/cara-ct-scan-mendeteksi-kanker-lebih-akurat (accessed Jan. 06, 2023).
R. A. Ramadhani, B. Wahyu, and R. Purbaningtyas, “Klasifikasi Tumor Otak Menggunakan Convolutional Neural Network Dengan Arsitektur EfficientNet-B3,” JUST IT J. Sist. Informasi, Teknol. Informasi, dan Komput., vol. 11, no. 3, pp. 55–59, 2021.
S. Alamgunawan and Y. Kristian, “Klasifikasi Tekstur Serat Kayu pada Citra Mikroskopik Veneer Memanfaatkan Deep Convolutional Neural Network,” J. Intell. Syst. Comput., vol. 2, no. 1, pp. 06–11, 2021, doi: 10.52985/insyst.v2i1.152.
M. Ramadhan, D. Iskandar Mulyana, M. Betty Yel, and S. Tinggi Ilmu Komputer Cipta Karya Informatika Jl Raden, “Optimasi Algoritma Cnn Menggunakan Metode Transfer Learning Untuk Klasifikasi Citra X-Ray Paru-Paru Pneumonia Dan Non-Pneunomia,” J. Tek. Inform. Kaputama, vol. 6, no. 2, pp. 670–679, 2022.
I. DLY, J. Jasril, S. Sanjaya, L. Handayani, and F. Yanto, “Klasifikasi Citra Daging Sapi dan Babi Menggunakan CNN Alexnet dan Augmentasi Data,” J. Inf. Syst. Res., vol. 4, no. 4, pp. 1176–1185, 2023, doi: 10.47065/josh.v4i4.3702.
S. Lasniari, J. Jasril, S. Sanjaya, F. Yanto, and M. Affandes, “Klasifikasi Citra Daging Babi dan Daging Sapi Menggunakan Deep Learning Arsitektur ResNet-50 dengan Augmentasi Citra,” J. Sist. Komput. dan Inform., vol. 3, no. 4, p. 450, 2022, doi: 10.30865/json.v3i4.4167.
S. Lasniari, J. Jasril, S. Sanjaya, F. Yanto, and M. Affandes, “Pengaruh Hyperparameter Convolutional Neural Network Arsitektur ResNet-50 Pada Klasifikasi Citra Daging Sapi dan Daging Babi,” J. Nas. Komputasi dan Teknol. Inf., vol. 5, no. 3, pp. 474–481, 2022, doi: 10.32672/jnkti.v5i3.4424.
D. Putri Ayuni, Jasril, M. Irsyad, F. Yanto, and S. Sanjaya, “Augmentasi Data Pada Implementasi Convolutional Neural Network Arsitektur Efficientnet-B3 Untuk Klasifikasi Penyakit Daun Padi,” Zo. J. Sist. Inf., vol. 5, no. 2, pp. 239–249, 2023, doi: 10.31849/zn.v5i2.13874.
N. H. Putri, Jasril, M. Irsyad, S. Agustian, and F. Yanto, “Klasifikasi Citra Stroke Menggunakan Augmentasi dan Convolutional Neural Network EfficientNet-B0,” J. Media Inform. Budidarma, vol. 7, no. 2, pp. 650–658, 2023, doi: 10.30865/mib.v7i2.5981.
B. Y. Phiadelvira, “Klasifikasi kanker serviks berdasarkan citra kolposkopi menggunakan Convolutional Neural Network (CNN) Model Alexnet,” JIKO (Jurnal Inform. dan Komputer), vol. 4, no. 1, pp. 1–103, 2021.
Y. A. Agus Eko Minarno, “Klasifikasi Citra Kanker Kulit Menggunakan Metode Convolutional Neural Network dengan Arsitektur EfficientNet-B0,” UMM, 2022. https://eprints.umm.ac.id/93049/
P. Gupta, S. Garg, and A. Garg, “Convolutional Neural Network For Lung Cancer,” vol. 2, no. 3, pp. 54–59, 2019.
W. Abdul, “An Automatic Lung Cancer Detection and Classification (ALCDC) System Using Convolutional Neural Network,” Proc. - Int. Conf. Dev. eSystems Eng. DeSE, vol. 2020-Decem, pp. 443–446, 2020, doi: 10.1109/DeSE51703.2020.9450778.
M. Tan and Q. V. Le, “EfficientNet: Rethinking model scaling for convolutional neural networks,” 36th Int. Conf. Mach. Learn. ICML 2019, vol. 2019-June, pp. 10691–10700, 2019.
D. A. Anam, L. Novamizanti, and S. Rizal, “Klasifikasi Patologi Makula Pada Retina Berdasarkan Citra Retinal OCT Menggunakan Convolutional Neural Network (Classifying Retinal Pathology Using OCT Retinal Imaging With Convolutional Neural Network),” vol. 8, no. 5, pp. 5064–5071, 2021, [Online]. Available: https://www.kaggle.com/paultimothymooney/kermany2018
S. Supiyanto and T. Suparwati, “Perbaikan Citra Menggunakan Metode Contrast Stretching,” J. Siger Mat., vol. 2, no. 1, pp. 13–18, 2021, doi: 10.23960/jsm.v2i1.2743.
“Perbandingan Contrast Stretching dan Histogram Equalization Untuk Memperbaiki Kualitas Citra Digital skripsi oleh?: Ridho Saragih Program Studi Teknik Informatika STMIK Global Informatika MDP Palembang,” 2020.
A. Satyo, B. Karno, W. Hastomo, I. Sari, K. Wardhana, and D. Arif, “29 Jenis Penyakit Tanaman Menggunakan Deep Learning EfficientNetB3 Identifikasi,” vol. 2, 2022.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Perbandingan Klasifikasi Citra CT-Scan Kanker Paru-Paru Menggunakan Contrast Stretching Pada CNN dengan EfficientNet-B0
ARTICLE HISTORY
Issue
Section
Copyright (c) 2023 Alfitra Salam, Febi Yanto, Surya Agustian, Siti Ramadhani

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).