Prediksi Hasil Panen Pertanian Salak di Daerah Tapanuli Selatan Menggunakan Algoritma SVM (Support Vector Machine)


Authors

  • Rakhmat Kurniawan Universitas Islam Negeri Sumatera Utara, Medan, Indonesia
  • Aidil Halim Universitas Islam Negeri Sumatera Utara, Medan, Indonesia
  • Henni Melisa Universitas Islam Negeri Sumatera Utara, Medan, Indonesia

DOI:

https://doi.org/10.30865/klik.v4i2.1246

Keywords:

South Tapanuli; Salak Agriculture; Prediction; Support Vector Machine; Accuracy

Abstract

South Tapanuli is an area known for its extensive salak farming. Salak farming in the South Tapanuli area is one of the economic sources of the people in the South Tapanuli area. The South Tapanuli Regional Agriculture Office is an agency engaged in various fields of agriculture, in its annual activity it records the results of salak agricultural production. Salak agricultural production results that are obtained often experience changes, so we need a system to make predictions, the goal is to find out the yield of salak farming. With the application of the SVM (Support Vector Machine) algorithm, it has been successfully carried out with a total of 28 data on salak agricultural yields in the South Tapanuli Region year 2019 - 2020. The error rate obtained from the RMSE (Root Mean Square Error) in making the prediction model is 1,49 while the accuracy level is 44%

Downloads

Download data is not yet available.

References

M. AR, “Sains, Teknologi, Dan Nilai-Nilai Moral,” Elkawnie, vol. 2, no. 2, p. 109, 2016, doi: 10.22373/ekw.v2i2.2657.

H. Priyatno, Potensi Buah Salak Sebagai Suplemen Obat dan Pangan, 1st ed. Surakarta: Muhammadiyah University Press, 2018.

E. P. K. Orpa, E. F. Ripanti, and T. Tursina, “Model Prediksi Awal Masa Studi Mahasiswa Menggunakan Algoritma Decision Tree C4.5,” J. Sist. dan Teknol. Inf., vol. 7, no. 4, p. 272, 2019, doi: 10.26418/justin.v7i4.33163.

Suhardjono, W. Ganda, and H. Abdul, “Prediksi Waktu Kelulusan Mahasiswa Menggunakan Svm Berbasis Pso,” Bianglala Inform., vol. 7, no. 2, pp. 97–101, 2019.

A. Pratama, R. C. Wihandika, and D. E. Ratnawati, “Implementasi algoritme support vector machine (SVM) untuk prediksi ketepatan waktu kelulusan mahasiswa,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. April, pp. 1704–1708, 2018.

I. Colanus, R. Drajana, and A. Bode, “Support Vector Machine Untuk Prediksi Produksi Tanaman Pangan di Provinsi Gorontalo,” J. NOE, vol. 4, no. 2, pp. 3–10, 2021.

R. H. Kusumodestoni and S. Sarwido, “Komparasi Model Support Vector Machines (Svm) Dan Neural Network Untuk Mengetahui Tingkat Akurasi Prediksi Tertinggi Harga Saham,” J. Inform. Upgris, vol. 3, no. 1, 2017, doi: 10.26877/jiu.v3i1.1536.

P. Rifkie, Algoritma Machine Learning. Bandung: Informatika Bandung, 2021.

M. Fitri, M. Anastasia, and A. T. Mohammad, Data Mining Konsep dan Penerapannya. Yogyakarta: Deepublish, 2021.

F. S. Jumeilah, “Penerapan Support Vector Machine (SVM) untuk Pengkategorian Penelitian,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 1, no. 1, pp. 19–25, 2017, doi: 10.29207/resti.v1i1.11.

I. C. R. Drajana, “Metode Support Vector Machine Dan Forward Selection Prediksi Pembayaran Pembelian Bahan Baku Kopra,” Ilk. J. Ilm., vol. 9, no. 2, pp. 116–123, 2017, doi: 10.33096/ilkom.v9i2.134.116-123.

H. W. Herwanto, T. Widiyaningtyas, and P. Indriana, “Penerapan Algoritme Linear Regression untuk Prediksi Hasil Panen Tanaman Padi,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 8, no. 4, p. 364, 2019, doi: 10.22146/jnteti.v8i4.537.

N. Suryani, A. S. Fitrani, D. Normalization, and M. M. Normalization, “Prediction Of Election Participant With Malang City Demographic Data Using The K - Nn Algorithm,” vol. 6, no. 36, pp. 2369–2376, 2022.

I. Suprayogi, Trimaijon, and Mahyudin, “Model Prediksi Liku Kalibrasi Menggunakan Pendekatan Jaringan Saraf Tiruan (ZST) (Studi Kasus?: Sub DAS Siak Hulu),” J. Online Mhs. Fak. Tek. Univ. Riau, vol. 1, no. 1, pp. 1–18, 2014.

R. I. Akhsanu, Panduan Pembuatan Flowchart. Surabaya: Fakultas Kesehatan masyarakat Departemen Administrasi Dan Kebijakan Kesehatan, 2017.

E. Jubile, Python Untuk Programmer Pemula. Jakarta: PT Elex Media Komputindo, 2019.

Nurhayati, Teknik Ensemble Learning Untuk Peningkatan Performa Akurasi Model Prediksi (Seleksi Mahasiswa Penerima Beasiswa). Tangerang: Pascal Books, 2022.

N. F. Aldi, H. N. Hanum, and H. Roni, Analisis Sentimen Terhadap Pembatasan Sosial Menggunakan Deep Learning. Bandung: Kreatif Industri Nusantara, 2020.

A. M. F. Alwan, A. Roni, and A. R. Maulana, Tutorial Optimasi Single Exponential Smoothing Menggunakan Algoritma Genetika. Bandung: Kreatif Industri Nusantara, 2020.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Prediksi Hasil Panen Pertanian Salak di Daerah Tapanuli Selatan Menggunakan Algoritma SVM (Support Vector Machine)

Dimensions Badge

ARTICLE HISTORY


Published: 2023-10-13
Abstract View: 53 times
PDF Download: 37 times