Klasifikasi Kualitas Buah Pisang Berdasarkan Citra Buah Menggunakan Stochastic Gradient Descent


Authors

  • Dedy Armiady Universitas Almuslim, Bireuen, Indonesia
  • Imam Muslem R Universitas Almuslim, Bireuen, Indonesia

DOI:

https://doi.org/10.30865/klik.v4i2.1243

Keywords:

Classification; Banana Fruit; Quality; Stochastic Gradient Descent; Hyperparameter

Abstract

Banana fruit quality is an important factor in meeting consumer demand and maintaining product quality in the supply chain. The development of automatic methods for classifying the quality of bananas is becoming increasingly important as the worldwide consumption of bananas grows. In this study, we propose a classification method for banana fruit quality using the Stochastic Gradient Descent (SGD) algorithm. This study aims to evaluate the performance of SGD in classifying the quality of bananas and to analyze the effect of selecting hyperparameters on the classification results. The dataset collected is a dataset containing pictures of bananas with various levels of ripeness and conditions. This dataset is used to train and test a classification model using SGD. During the experiment, hyperparameter tuning processes such as learning rate, momentum, and batch size were carried out to understand how these parameters affect the performance of SGD in classification. We report the results of evaluating the classification based on accuracy and analyze changes in performance with variations in hyperparameters. The results of this study indicate that SGD has the potential to classify the quality of bananas, where the optimal SGD model obtained a classification accuracy of 99.9%, compared to the standard SGD model which only obtained a classification accuracy of 94.7%.

Downloads

Download data is not yet available.

References

E. Riandini, R. R. S. Astuti, and M. R. Setiawan, “Jenis-Jenis Pisang (Musaceae) di Kecamatan Curup Tengah Kabupaten Rejang Lebong Types of Banana (Musaceae) in Curup Tengah District, Rejang Lebong Regency,” Biologica Samudra, vol. 3, no. 1, 2021.

F. K. Arinta, F. S. Pranata, and Y. R. Swasti, “Potensi daging buah pisang dan kulit pisang (Musaceae) untuk peningkatan kualitas roti dan kue,” Teknologi Pangan?: Media Informasi dan Komunikasi Ilmiah Teknologi Pertanian, vol. 12, no. 2, 2021, doi: 10.35891/tp.v12i2.2416.

G. Gampur, I. W. Ordiyasa, and S. Hasta Mulyani, “Klasifikasi Jenis Pisang Menggunakan Convolutional Neural Network,” Seminar Nasional Teknik Elektro, Informatika dan Sistem Informasi, vol. 1, no. 1, 2022, doi: 10.35842/sintaks.v1i1.6.

K. H. Wardhany, Khasiat Ajaib Pisang Khasiatnya A to Z Dari Akar Hingga Kulit Buahnya. 2014.

Y. E. Yana and N. Nafi’iyah, “Klasifikasi Jenis Pisang Berdasarkan Fitur Warna, Tekstur, Bentuk Citra Menggunakan SVM dan KNN,” RESEARCH?: Journal of Computer, Information System & Technology Management, vol. 4, no. 1, 2021, doi: 10.25273/research.v4i1.6687.

I. Muslem, “Prototype Kunci RFID (Radio Frequency Identification) dalam Meningkatkan Keamanan Kendaraan Bermotor,” JURNAL TIKA, vol. 5, no. 3, 2021, doi: 10.51179/tika.v5i3.104.

T. Firmansyah and I. M. R, “Visualisasi Instruksi Kerja Sistem Informasi Pelelangan Online E-Auction Pt Pupuk Iskandar Muda Berbasis Multimedia,” Tika, vol. 4, no. 1, 2019.

V. Aurellya, “Kinetika Perubahan Kualitas Pisang Kepok Tanjung (Musa Paradisiaca L.) Pada Pemeraman Menggunakan Ethepon Di Bawah Pengaruh Suhu Penyimpanan,” pisang kepok, 2022.

G. E. Gunawan, “Kualitas nugget berbahan dasar jantung pisang,” Jurnal Ilmiah Pariwisata dan Bisnis, vol. 1, no. 8, 2022, doi: 10.22334/paris.v1i8.133.

I. Muslem R, “Sistem Pendeteksi Kebocoran Gas Rumah Tangga Menggunakan Mq-2 Sensor Dan Mikrokontroler,” JURNAL TIKA, vol. 6, no. 02, 2021, doi: 10.51179/tika.v6i02.457.

D. Armiady and I. Muslem R., “Penetapan Klaster Siswa Unggul Dengan Menggunakan Algoritma Roc-Smarter,” Jurnal TIKA, vol. 7, no. 2, 2022, doi: 10.51179/tika.v7i2.1229.

F. Fitriani and I. Muslem R, “E-Absensi Mahasiswa Fakultas Ilmu Komputer Universitas Almuslim Berbasis Web,” JURNAL TIKA, vol. 5, no. 3, 2021, doi: 10.51179/tika.v5i3.141.

S. Winar, E. Rizki Putra, and I. Muslem R., “Sistem Informasi Kalkulasi Zakat Pada Kantor Baitul Mal Kabupaten Bireuen Berbasis Android,” Jurnal TIKA, vol. 7, no. 3, 2022, doi: 10.51179/tika.v7i3.1584.

T. Fakhrurrazi, T. M. Johan, and I. Muslem R., “Rancang Bangun Sistem Pengamanan Pintu Rumah Menggunakan Android Berbasis Arduino Uno,” Jurnal Ilmu Komputer Aceh, vol. 1, no. 1, 2023, doi: 10.51179/ilka.v1i1.1896.

R. Dewi, T. M. Johan, and I. Muslem R., “Aplikasi Kriptografi Dalam Mengamankan Pesan Teks Dengan Metode Algoritma Rc4 Berbasis Android,” JURNAL TIKA, vol. 6, no. 01, 2021, doi: 10.51179/tika.v6i01.416.

I. R. Muslem and T. M. Johan, “KLIK: Kajian Ilmiah Informatika dan Komputer Klasifikasi Citra Ikan Menggunakan Algoritma Convolutional Neural Network dengan Arsitektur VGG-16,” Media Online), vol. 4, no. 2, pp. 978–985, 2023, doi: 10.30865/klik.v4i2.1209.

Z. Hakim, S. Rahayu, and K. Irawati, “Klasifikasi Tingkat Kematangan Buah Pisang Kepok Menggunakan Algoritma Naive Bayes,” Academic Journal of Computer Science Research, vol. 4, no. 1, 2022, doi: 10.38101/ajcsr.v4i1.442.

Y. Amrozi, D. Yuliati, A. Susilo, N. Novianto, and R. Ramadhan, “Klasifikasi Jenis Buah Pisang Berdasarkan Citra Warna dengan Metode SVM,” Jurnal Sisfokom (Sistem Informasi dan Komputer), vol. 11, no. 3, 2022, doi: 10.32736/sisfokom.v11i3.1502.

A. Harjoko and U. G. Mada, “Pemrosesan Citra Digital untuk Klasifikasi Mutu Buah Pisang Menggunakan Jaringan Saraf Tiruan,” IJEIS (Indonesian Journal of Electronics and Instrumentation Systems), vol. 4, no. 1, 2014, doi: 10.22146/ijeis.4222.

S. P. Adenugraha, V. Arinal, and D. I. Mulyana, “Klasifikasi Kematangan Buah Pisang Ambon Menggunakan Metode KNN dan PCA Berdasarkan Citra RGB dan HSV,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 6, no. 1, 2022, doi: 10.30865/mib.v6i1.3287.

M. F. Ajizi, D. Syauqy, and M. H. H. Ichsan, “Klasifikasi Kematangan Buah Pisang Berbasis Sensor Warna Dan Sensor Load Cell Menggunakan Metode Naive Bayes,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 2019.

J. Jusrawati, A. Futri, and A. B. Kaswar, “Klasifikasi Tingkat Kematangan Buah Pisang Dalam Ruang Warna RGB Menggunakan Jaringan Syaraf Tiruan (JST),” Journal of Embedded Systems, Security and Intelligent Systems, vol. 2, no. 1, 2021, doi: 10.26858/jessi.v2i1.20327.

A. D. Putro and A. Hermawan, “Pengaruh Cahaya dan Kualitas Citra dalam Klasifikasi Kematangan Pisang Cavendish Berdasarkan Ciri Warna Menggunakan Artificial Neural Network,” MATRIK?: Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, vol. 21, no. 1, 2021, doi: 10.30812/matrik.v21i1.1396.

K. Marti, Stochastic optimization methods: Applications in engineering and operations research. 2015. doi: 10.1007/978-3-662-46214-0.

V. Gandikota, D. Kane, R. K. Maity, and A. Mazumdar, “VqSGD: Vector Quantized Stochastic Gradient Descent,” IEEE Trans Inf Theory, vol. 68, no. 7, 2022, doi: 10.1109/TIT.2022.3161620.

J. Sirignano and K. Spiliopoulos, “Stochastic gradient descent in continuous time: A central limit theorem,” Stochastic Systems, vol. 10, no. 2, 2020, doi: 10.1287/stsy.2019.0050.

J. An, J. Lu, and L. Ying, “Stochastic modified equations for the asynchronous stochastic gradient descent,” Information and Inference, vol. 9, no. 4, 2020, doi: 10.1093/IMAIAI/IAZ030.

K. Marti, Stochastic optimization methods (Second edition). 2008. doi: 10.1007/978-3-540-79458-5.

W. Li, Z. Wu, T. Chen, L. Li, and Q. Ling, “Communication-Censored Distributed Stochastic Gradient Descent,” IEEE Trans Neural Netw Learn Syst, vol. 33, no. 11, 2022, doi: 10.1109/TNNLS.2021.3083655.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Klasifikasi Kualitas Buah Pisang Berdasarkan Citra Buah Menggunakan Stochastic Gradient Descent

Dimensions Badge

ARTICLE HISTORY


Published: 2023-10-31
Abstract View: 24 times
PDF Download: 17 times