Analisis Kinerja Algoritma K-Nearest Neighbor Imputation (KNNI) Untuk Missing Value Pada Klasifikasi Data Mining


Authors

  • Miraati Laia Universitas Budi Darma, Medan, Indonesia

DOI:

https://doi.org/10.47065/jieee.v2i3.891

Keywords:

Datasets; Mining Data; Missing Value; K-NNI; Classification

Abstract

At this time many researchers use datasets for research, in the dataset there is a lot of important information provided to make it easier for researchers to process the data, but there are obstacles when trying to process the data, namely some data values are lost, or even damaged (incompatible) with other values. The number of attributes and data samples in the dataset is unlimited which makes it difficult for researchers to find important information based on the goals of each researcher. The missing or damaged values are known as missing values and this often happens when researchers process data taken from datasets. When researchers classify a dataset, of course it is difficult to classify because if there is missing data, the classification process cannot be carried out completely. Of course this will greatly affect the results obtained and also the results of the accuracy of the process. The problem of missing data (missing value) must be resolved, one way to solve this problem is by using the K-Nearest Neighbor Imputation (K-NNI) algorithm. The KNNI algorithm is one of the data mining algorithms that can restore the missing value problem by performing pattern recognition of the nearest data from the missing data. The final result after applying KNNI in fixing the missing value is to obtain a weight value for each K closest observation of 51.6161 on K5. Datasets that experience missing values have been adjusted based on the weight values and the implementation of the KNNI algorithm with the rapidminer application. By returning data using the KNNI algorithm, it is hoped that it can help solve these problems so that the results obtained from the classification process are more accurate and the results of greater accuracy

Downloads

Download data is not yet available.

References

E. Sartika, “Analisis metode k nearest neighbor imputation (knni) untuk mengatasi data hilang pada estimasi data survey,” Tedc, vol. 12, no. 3, pp. 219–227, 2018.

D. N. Firmansyah, S. Adinugroho, and B. Rahayudi, “Kesejahteraan sosial menggunakan Algoritme Self-Organizing Maps dengan perbaikan Missing Value K-Nearest Neighbors,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 7, pp. 7205–7213, 2019.

I. J. Fadillah and S. Muchlisoh, “Perbandingan Metode Hot-Deck Imputation Dan Metode Knni Dalam Mengatasi Missing Values,” Semin. Nas. Off. Stat., vol. 2019, no. 1, pp. 275–285, 2020, doi: 10.34123/semnasoffstat.v2019i1.101.

Moch. Lutfi and Mochamad Hasyim, “Penanganan Data Missing Value Pada Kualitas Produksi Jagung Dengan Menggunakan Metode K-Nn Imputation Pada Algoritma C4.5,” J. Resist. (Rekayasa Sist. Komputer), vol. 2, no. 2, pp. 89–104, 2019, doi: 10.31598/jurnalresistor.v2i2.427.

F. O. Lusiana, I. Fatma, and A. P. Windarto, “Estimasi Laju Pertumbuhan Penduduk Menggunakan Metode Regresi Linier Berganda Pada BPS Simalungun,” J. Informatics Manag. Inf. Technol., vol. 1, no. 2, pp. 79–84, 2021, [Online]. Available: https://hostjournals.com/

Z. Nabila, A. Rahman Isnain, and Z. Abidin, “Analisis Data Mining Untuk Clustering Kasus Covid-19 Di Provinsi Lampung Dengan Algoritma K-Means,” J. Teknol. dan Sist. Inf., vol. 2, no. 2, p. 100, 2021, [Online]. Available: http://jim.teknokrat.ac.id/index.php/JTSI

S. Al Syahdan and A. Sindar, “Data Mining Penjualan Produk Dengan Metode Apriori Pada Indomaret Galang Kota,” J. Nas. Komputasi dan Teknol. Inf., vol. 1, no. 2, 2018, doi: 10.32672/jnkti.v1i2.771.

A. Wanto et al., Data Mining: Algoritma dan Implementasi. Yayasan kita menulis, 2020.

A. Z. Siregar, “Implementasi Metode Regresi Linier Berganda Dalam Estimasi Tingkat Pendaftaran Mahasiswa Baru,” Kesatria J. Penerapan Sist. Inf. (Komputer dan Manajemen), vol. 2, no. 3, pp. 133–137, 2021, [Online]. Available: https://tunasbangsa.ac.id/pkm/index.php/kesatria/article/view/73

S. S. S, A. T. Purba, V. Marudut, M. Siregar, T. Komputer, and P. B. Indonesia, “SISTEM PENDUKUNG KEPUTUSAN KELAYAKAN PEMBERIAN PINJAMAN,” vol. 3, pp. 25–30, 2020, doi: 10.37600/tekinkom.v3i1.131.

B. S. Pranata and D. P. Utomo, “Penerapan Data Mining Algoritma FP-Growth Untuk Persediaan Sparepart Pada Bengkel Motor (Study Kasus Bengkel Sinar Service),” Bull. Inf. Technol., vol. 1, no. 2, pp. 83–91, 2020.

L. Mutawalli and W. Murniati, “PENERAPAN KNNIMPUTER DALAM MENGOLAH DATA MISSING VALUE UNTUK MEMBANTU MENINGKATKAN AKURASI SUPPORT VECTOR MACHINE KLASIFIKASI PENYAKIT TIROID,” J. Inform. Teknol. dan Sains, vol. 4, no. 4, pp. 386–390, 2022.

M. Lutfi and M. Hasyim, “Penanganan Data Missing Value Pada Kualitas Produksi Jagung Dengan Menggunakan Metode K-Nn Imputation Pada Algoritma C4. 5,” J. Resist. (Rekayasa Sist. Komputer), vol. 2, no. 2, pp. 89–104, 2019.

B. K. KHOTIMAH, “Optimasi Pemodelan Hybrid Naive Bayes Berbobot Dengan Menggunakan Algoritma Genetika Pada Data Missing Value.” UNIVERSITAS AIRLANGGA, 2020.

R. A. Maula et al., “Handling Missing Value dengan Pendekatan Regresi pada Dataset Akuakultur Berukuran Kecil,” J. Rekayasa Elektr., vol. 18, no. 3, 2022.

I. J. Fadillah and C. D. Puspita, “PEMANFAATAN METODE WEIGHTED K-NEAREST NEIGHBOR IMPUTATION (WEIGHTED KNNI) UNTUK MENGATASI MISSING DATA,” in Seminar Nasional Official Statistics, 2020, vol. 2020, no. 1, pp. 511–518.

A. F. Sallaby and A. Azlan, “Analysis of Missing Value Imputation Application with K-Nearest Neighbor (K-NN) Algorithm in Dataset,” IJICS (International J. Informatics Comput. Sci., vol. 5, no. 2, pp. 141–144, 2021.

D. N. F. M. DESY NUR FITRIANA MURJITO, “PERBANDINGAN METODE IMPUTASI: METODE MEAN DAN METODE K NEAREST NEIGHBOR (KNN) UNTUK MENGATASI DATA HILANG PADA DATA SURVEI,” 2021.

A. Fadlil, “K Nearest Neighbor imputation performance on missing value data graduate user satisfaction,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 6, no. 4, pp. 570–576, 2022.

F. R. A. Widodo, “PENANGANAN DATA MISSING VALUE DENGAN KNN-IMPUTASI PADA ALGORITMA K-NEAREST NEIGHBOUR UNTUK KLASIFIKASI DATA PELANGGAN INDIHOME PT TELKOM.” Universitas Yudharta, 2021.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Analisis Kinerja Algoritma K-Nearest Neighbor Imputation (KNNI) Untuk Missing Value Pada Klasifikasi Data Mining

Dimensions Badge

ARTICLE HISTORY


Published: 2023-03-30
Abstract View: 701 times
PDF Download: 1084 times

Issue

Section

Articles