Penerapan Metode Cart Dalam Memprediksi Penjualan Produk Fast Moving Dan Slow Moving


Authors

  • Fuspita Dewi Savitri Universitas Budi Darma, Medan, Indonesia

Keywords:

Application; prediction of fast moving and slow moving products; Decision Tree; Cart

Abstract

The need for precise, precise and accurate information has become a material for companies, organizations or agencies with an interest in making and obtaining decisions that will be achieved. Decisions taken are more precise, they must be supported by relevant and accurate data. The use of information technology can generate profits and increase the efficiency of a company. The very rapid advancement of information technology creates problems in predicting fast moving and slow moving products. The problem arises because the company has not been able to anticipate things that will come in influencing the company's operations, precisely at PT. Matahari Department Store Thamrin Plaza Medan. The decision tree produced by CART is a binary tree that has attribute values ??by selecting the most optimal branching in calculating each variable. The principle of the classification tree is to separate all observations into two groups of observations into the next two groups of observations in order to obtain the minimum number of observations for each observation group.

Downloads

Download data is not yet available.

References

L. Dwi, B. Pratiwi, W. Wibowo, and J. Statistika, “Klasifikasi Nilai Peminat SBMPTN ( Seleksi Bersama Masuk Perguruan Tinggi Negeri ) ITS dengan Pendekatan Classification and Regression Trees ( CART ),” vol. 4, no. 2, pp. 2–7, 2015.

S. Holis, S. Wulan, and I. Pendahuluan, “Penggunaan Metode Classification and Regression Trees ( CART ) untuk Klasifikasi Rekurensi Pasien Kanker Serviks di RSUD Dr . Soetomo Surabaya,” vol. 4, no. 2, pp. 211–216, 2015.

“No Title,” PT. Matahari Thamrin Plaza Medan, 2017.

F. Herawati, Data Mining. Yogyakarta., 2013.

B. M. Metisen and H. L. Sari, “ANALISIS CLUSTERING MENGGUNAKAN METODE K-MEANS DALAM PENGELOMPOKKAN PENJUALAN PRODUK PADA SWALAYAN FADHILA,” vol. 11, no. 2, pp. 110–118, 2015.

W. A. Triyanto, F. Teknik, P. Studi, S. Informasi, and U. M. Kudus, “ASSOCIATION RULE MINING UNTUK PENENTUAN REKOMENDASI,” vol. 5, no. 2, pp. 121–126, 2014.

D. R. Yunianto, P. N. Malang, and C. Dewi, “SEQUENTIAL PATTERN MINING PADA PENCARIAN POLA PERILAKU PENGGUNA,” no. January, 2014.

E. Turban, Decision Support Systems and Intellegents System, 9th Edition, Pearson/Prentice Hall. 2011.

D. Gudang, “Manufacturing plant warehouse Manufacturing plant warehouse,” 2005.

“No Title,” pp. 1–129.

datamining-menggunakan -weka.html, No Title. .


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Penerapan Metode Cart Dalam Memprediksi Penjualan Produk Fast Moving Dan Slow Moving

ARTICLE HISTORY

Submitted: 2022-03-18
Published: 2022-06-30
Abstract View: 33 times
PDF Download: 22 times

Issue

Section

Articles