Penerapan Jaringan Saraf Tiruan Backprogation Dalam Memprediksi Jumlah Pasien Rumah Sakit
DOI:
https://doi.org/10.47065/jieee.v1i2.296Keywords:
Artificial Neural Networks; Backpropagation; Prediction,; Hospital PatientsAbstract
Artificial Neural Network is one of the artificial representations of the human brain that always tries to simulate the learning process in the human brain. Artificial Neural Network (ANN) is defined as an information processing system that has characteristics similar to human neural networks. ANN is an information processing system that has similar characteristics to a biological neural network. The hospital is an integral part of a social and health organization with the function of providing services, healing disease and preventing disease to the community. Backpropagation network is one of the algorithms that are often used in solving problems. complicated problem. This algorithm is also used in regulatory applications because the training process is based on a simple relationship. The problems that occur at the Djasemen Saragih Pematangsiantar Hospital are the lack of doctors working at the hospital so that there is a density of patients that occur every year, and the absence of patient rooms that are placed at home. ill when there was an increase that was not recognized by the hospital. With the data available every year, it is expected that the use of artificial neural networks using the backprogation method is very useful for the hospital in determining the prediction of the number of hospital patients for the next year can be used as the basic material for changes or additional patient rooms when there is an excess of predicted patients.
Downloads
References
E. P. Cynthia and E. Ismanto, “Jaringan Syaraf Tiruan Algoritma Backpropagation Dalam Memprediksi Ketersediaan Komoditi Pangan Provinsi Riau,” Semin. Nas. Teknol. Informasi, Komun. dan Ind., pp. 18–19, 2017.
S. H. Nasution, C. Hanum, and J. Ginting, “The Growth of Palm Oil (Elaeis guineensis Jacq.) Seedlings in Various Comparison of Media Solid Decanter and Oil Palm Empty Fruit Bunch at Single Stage System,” J. Online Agroekoteknologi, vol. 2, no. 2337, pp. 691–701, 2014.
S. D. Purwanto, “IMPLEMENTASI JARINGAN SYARAF TIRUAN BACKPROPAGATION,” Semin. Nas. Teknol. Inf. dan Multimed., pp. 6–7, 2016.
Y. A. Lesnussa, S. Latuconsina, and E. R. Persulessy, “Aplikasi Jaringan Saraf Tiruan Backpropagation untuk Memprediksi Prestasi Siswa SMA ( Studi kasus?: Prediksi Prestasi Siswa SMAN 4 Ambon ),” J. Mat. Integr., vol. 11, no. 2, pp. 149–160, 2015.
J. Prayudha, Purwadi, and I. Mariami, “Implementasi Jaringan Syaraf Tiruan Dalam Memprediksi Hasil Perkebunan Dengan Metode Backpropagation,” Semin. Nas. Sains Teknol. Inf., pp. 441–445, 2019.
E. Kurniati, “Pemanfaatan Cangkang Kelapa Sawit Sebagai Arang Aktif,” J. Penelit. Ilmu Tek., vol. 8, no. 2, pp. 96–103, 2008.
A. Sudarsono, “JARINGAN SYARAF TIRUAN UNTUK MEMPREDIKSI LAJU PERTUMBUHAN PENDUDUK MENGGUNAKAN METODE,” vol. 12, no. 1, pp. 61–69, 2016.
E. T. Marjiyono, Bambang Soedijono WA, Luthfi, “PENGGUNAAN JARINGAN SYARAF TIRUAN UNTUK MERAMALKAN PERMINTAAN PADA PERUSAHAAN RETAIL,” vol. 2, no. 2009, 2018.
Y. Andriani, H. Silitonga, and A. Wanto, “Analisis Jaringan Syaraf Tiruan untuk prediksi volume ekspor dan impor migas di Indonesia,” vol. 4, no. 1, pp. 30–40, 2018.
N. Arifah, A. Murnomo, and A. Suryanto, “Implementasi Neural Network pada Matlab untuk Prakiraan KOnsumsi Beban Listrik Kabupaten Ponorogo Jawa Timur,” vol. 9, no. 1, 2017.
A. Wanto, “Analisis Prediksi Indeks Harga Konsumen Berdasarkan Kelompok Kesehatan Dengan Menggunakan Metode Backpropagation,” J. Penelit. Tek. Inform., vol. 2, no. 2, pp. 37–44, 2017.
Z. A. Matodang, “Jaringan Syaraf Tiruan Dengan Algoritma Backpropagtion Untuk Penentuan Kelulusan Sidang Skripsi,” Pelita Inform. Budi Darma, vol. 4, no. 1, pp. 84–93, 2013.
I. W. Kusuma, “Aplikasi Model Backpropagation Neural Network untuk Perkiraan Produksi Tebu pada PT. Perkebunan Nusantara IX,” Pros. Semin. Nas. Mat. dan Pendidik. Mat., pp. 97–108, 2011.
D. T. Wiyanti, U. Negeri, and S. Unnes, “Analisis Produktivitas Kinerja Dosen dan Tenaga Kependidikan dalam Mewujudkan Tahun Reputasi Universitas Negeri Semarang ( UNNES ) Menggunakan Jaringan Saraf Tiruan,” vol. 1, pp. 919–927, 2018.
P. Alkhairi, I. S. Damanik, and A. P. Windarto, “Penerapan Jaringan Saraf Tiruan untuk Mengukur Korelasi Beban Kerja Dosen Terhadap Peningkatan Jumlah Publikasi,” Pros. Semin. Nas. Ris. Inf. Sci., vol. 1, no. September, p. 581, 2019, doi: 10.30645/senaris.v1i0.65.
R. Y. Dillak and A. Harjoko, “Klasifikasi Fase Retinopati Diabetes Menggunakan Backpropagation Neural Network,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 7, no. 1, pp. 23–34, 2013, doi: 10.22146/ijccs.3049.
A. T. Solikhun, M. Safii, “JARINGAN SARAF TIRUAN UNTUK MEMPREDIKSI TINGKAT PEMAHAMAN SISIWA TERHADAP MATAPELAJARAN DENGAN MENGGUNAKAN ALGORITMA BACKPROPAGATION Solikhun,” J. Sains Komput. Inform., vol. 1, no. 1, pp. 24–36, 2017.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Penerapan Jaringan Saraf Tiruan Backprogation Dalam Memprediksi Jumlah Pasien Rumah Sakit
ARTICLE HISTORY
Issue
Section
Copyright (c) 2021 Dea Dwi Rizki Tampubolon, Irfan Sudahri Damanik, Harly Okprana

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).


