Analisis Sentimen Program Makan Bergizi Gratis pada Podcast Bocor Alus Politik dengan Algoritma Naive Bayes
DOI:
https://doi.org/10.47065/jieee.v5i2.2874Keywords:
Sentiment Analysis; Naive Bayes; Classification; Free Nutritious Meal Program; YoutubeAbstract
The Free Nutritious Meal (MBG) program initiated by the elected administration has evolved into a strategic public policy, yet it has garnered diverse responses from various strata of society. These opinion dynamics are clearly evident through the high volume of interaction on social media, particularly within the comment section of the "Bocor Alus Politik" podcast on YouTube. This phenomenon reflects a significant polarization of public sentiment, which is crucial to map as a basis for evaluating government policy. This study is conducted with the primary objective of developing a sentiment analysis model capable of classifying public opinion regarding the MBG Program into two major categories, namely positive and negative sentiments, utilizing the Naive Bayes algorithm known for its effectiveness in text processing. The research methodology utilizes primary data in the form of collected public comments which undergo a systematic series of text preprocessing stages, including cleaning, tokenization, filtering, and vectorization, to prepare the data for processing. Model performance evaluation is subsequently conducted using the k-fold cross-validation method to ensure the reliability of the classification results. Experimental results indicate that the model successfully achieved an overall accuracy rate of 77.1%. In-depth analysis of per-class performance demonstrates that the model possesses a stronger capability in detecting negative opinions, evidenced by a precision of 0.795, recall of 0.884, and f1-score of 0.837, compared to positive sentiments (precision 0.701, recall 0.545, and f1-score 0.613). Based on these evaluation metrics, it can be concluded that the Naive Bayes algorithm proves to be sufficiently effective in classifying the direction of public sentiment, particularly in identifying public aspirations that are critical of the MBG program.
Downloads
References
D. Ni Kadek Trisna Cintya, “Resmi Dimulai Hari Ini, Siapa Saja Penerima Manfaat Makan Bergizi Gratis?,” 2025. [Online]. Available: https://www.tempo.co/politik/resmi-dimulai-hari-ini-siapa-saja-penerima-manfaat-makan-bergizi-gratis--1190382
S. M. Aji Muhawarman, “Kemenkes Perketat Pengawasan dalam Program Makan Bergizi Gratis,” kemkes.go.id., 2025. [Online]. Available: https://kemkes.go.id/id/kemenkes-perketat-pengawasan-dalam-program-makan-bergizi-gratis
E. C. Sugiarto, “Makan Bergizi Gratis dan SDM Unggul.” [Online]. Available: www.setneg.go.id.
and P. D. K. P. Dasar, D. Menengah, D. Jenderal, P. Anak, U. Dini, “PEDOMAN MAKAN BERGIZI GRATIS (MBG) DI SATUAN PENDIDIKAN. 2024.
A. Nugroho, “Program MBG Dinilai Berisiko Pemborosan, Sebaiknya Diprioritaskan pada Anak Keluarga Kurang Mampu,” ugm.ac.id. [Online]. Available: https://ugm.ac.id/id/berita/program-mbg-dinilai-berisiko-pemborosan-sebaiknya-diprioritaskan-pada-anak-keluarga-kurang-mampu/
M. Modianus Laia, F. N. Hasan, and A. Y. Kuntoro, “Analisis Sentimen Program Makan Gratis Pada Platform X Menggunakan Algoritma Naïve Bayes,” Jl. Kramat Raya No, vol. 98, 2025, [Online]. Available: https://ejournal.upbatam.ac.id/index.php/jif/article/view/10427/4495
T. P. Pinasti and L. M. Alfarizi, “Journal Juridisch,” vol. 3, no. 2, pp. 130–141, 2025, doi: 10.26623/jj.v3i2.12285.
D. Purnamasari et al., Pengantar Metode Analisis Sentimen. 2023. [Online]. Available: https://penerbit.gunadarma.ac.id/2023/09/13/pengantar-metode-analisis-sentimen/
H. E. Dwi et al., Pengantar Manajemen. 2023. [Online]. Available: https://penerbiteureka.com/2025/03/08/pengantar-manajemen-6/
Y. YUNITASARI, “TEORI DAN IMPLEMENTASI ANALISIS SENTIMEN MENGGUNAKAN PYTHON,” vol. 32, no. 3, pp. 167–186, 2023, [Online]. Available: https://eprint.unipma.ac.id/3140/
A. Agustian, T. Tukiro, and F. Nurapriani, “Penerapan Analisis Sentimen Dan Naive Bayes Terhadap Opini Penggunaan Kendaraan Listrik Di Twitter,” J. TIKA, vol. 7, no. 3, pp. 243–249, 2022, doi: 10.51179/tika.v7i3.1550.
Ernianti Hasibuan and Elmo Allistair Heriyanto, “Analisis Sentimen Pada Ulasan Aplikasi Amazon Shopping Di Google Play Store Menggunakan Naive Bayes Classifier,” J. Tek. dan Sci., vol. 1, no. 3, pp. 13–24, 2022, doi: 10.56127/jts.v1i3.434.
P. G. Aryanti and I. Santoso, “Analisis Sentimen Pada Twitter Terhadap Mobil Listrik Menggunakan Algoritma Naive Bayes,” IKRA-ITH Inform. J. Komput. dan Inform., vol. 7, no. 2, pp. 133–137, 2023, [Online]. Available: https://journals.upi-yai.ac.id/index.php/ikraith-informatika/article/view/2821
Syahril Dwi Prasetyo, Shofa Shofiah Hilabi, and Fitri Nurapriani, “Analisis Sentimen Relokasi Ibukota Nusantara Menggunakan Algoritma Naïve Bayes dan KNN,” J. KomtekInfo, vol. 10, pp. 1–7, 2023, doi: 10.35134/komtekinfo.v10i1.330.
H. Eni Tri and S. Ari, “Analisis Sentimen Respon Masyarakat Terhadap Kabar Harian Covid-19 Pada Twitter Kementerian Kesehatan,” J. Teknol. dan Sist. Inf., vol. 2, no. 3, pp. 32–37, 2022, [Online]. Available: http://repository.teknokrat.ac.id/3224/
A. I. Tanggraeni and M. N. N. Sitokdana, “Analisis Sentimen Aplikasi E-Government pada Google Play Menggunakan Algoritma Naïve Bayes,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 9, no. 2, pp. 785–795, 2022, doi: 10.35957/jatisi.v9i2.1835.
F. T. A. Meidyan Permata Putri, Guntoro Barovih, Rezania Agramanisti Azdy, Yuniansyah, Andri Saputra, Yesi Sriyeni, Arsia Rini, Algoritma dan Atruktur Data. 2022.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Analisis Sentimen Program Makan Bergizi Gratis pada Podcast Bocor Alus Politik dengan Algoritma Naive Bayes
ARTICLE HISTORY
Issue
Section
Copyright (c) 2025 Abdulrahman Tuasamu, Rapanca Cahya Gumilang, Mohammad Akmal Fachrian, Daiva Rakha Krisnandi, Azizah Wardah Indryani, Fuad Nur Hasan

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).


