Analisis Sentimen Program Makan Bergizi Gratis pada Podcast Bocor Alus Politik dengan Algoritma Naive Bayes


Authors

  • Abdulrahman Tuasamu Universitas Bina Sarana Informatika, Depok, Indonesia
  • Rapanca Cahya Gumilang Universitas Bina Sarana Informatika, Depok, Indonesia
  • Mohammad Akmal Fachrian Universitas Bina Sarana Informatika, Depok, Indonesia
  • Daiva Rakha Krisnandi Universitas Bina Sarana Informatika, Depok, Indonesia
  • Azizah Wardah Indryani Universitas Bina Sarana Informatika, Depok, Indonesia
  • Fuad Nur Hasan Universitas Bina Sarana Informatika, Depok, Indonesia

DOI:

https://doi.org/10.47065/jieee.v5i2.2874

Keywords:

Sentiment Analysis; Naive Bayes; Classification; Free Nutritious Meal Program; Youtube

Abstract

The Free Nutritious Meal (MBG) program initiated by the elected administration has evolved into a strategic public policy, yet it has garnered diverse responses from various strata of society. These opinion dynamics are clearly evident through the high volume of interaction on social media, particularly within the comment section of the "Bocor Alus Politik" podcast on YouTube. This phenomenon reflects a significant polarization of public sentiment, which is crucial to map as a basis for evaluating government policy. This study is conducted with the primary objective of developing a sentiment analysis model capable of classifying public opinion regarding the MBG Program into two major categories, namely positive and negative sentiments, utilizing the Naive Bayes algorithm known for its effectiveness in text processing. The research methodology utilizes primary data in the form of collected public comments which undergo a systematic series of text preprocessing stages, including cleaning, tokenization, filtering, and vectorization, to prepare the data for processing. Model performance evaluation is subsequently conducted using the k-fold cross-validation method to ensure the reliability of the classification results. Experimental results indicate that the model successfully achieved an overall accuracy rate of 77.1%. In-depth analysis of per-class performance demonstrates that the model possesses a stronger capability in detecting negative opinions, evidenced by a precision of 0.795, recall of 0.884, and f1-score of 0.837, compared to positive sentiments (precision 0.701, recall 0.545, and f1-score 0.613). Based on these evaluation metrics, it can be concluded that the Naive Bayes algorithm proves to be sufficiently effective in classifying the direction of public sentiment, particularly in identifying public aspirations that are critical of the MBG program.

Downloads

Download data is not yet available.

References

D. Ni Kadek Trisna Cintya, “Resmi Dimulai Hari Ini, Siapa Saja Penerima Manfaat Makan Bergizi Gratis?,” 2025. [Online]. Available: https://www.tempo.co/politik/resmi-dimulai-hari-ini-siapa-saja-penerima-manfaat-makan-bergizi-gratis--1190382

S. M. Aji Muhawarman, “Kemenkes Perketat Pengawasan dalam Program Makan Bergizi Gratis,” kemkes.go.id., 2025. [Online]. Available: https://kemkes.go.id/id/kemenkes-perketat-pengawasan-dalam-program-makan-bergizi-gratis

E. C. Sugiarto, “Makan Bergizi Gratis dan SDM Unggul.” [Online]. Available: www.setneg.go.id.

and P. D. K. P. Dasar, D. Menengah, D. Jenderal, P. Anak, U. Dini, “PEDOMAN MAKAN BERGIZI GRATIS (MBG) DI SATUAN PENDIDIKAN. 2024.

A. Nugroho, “Program MBG Dinilai Berisiko Pemborosan, Sebaiknya Diprioritaskan pada Anak Keluarga Kurang Mampu,” ugm.ac.id. [Online]. Available: https://ugm.ac.id/id/berita/program-mbg-dinilai-berisiko-pemborosan-sebaiknya-diprioritaskan-pada-anak-keluarga-kurang-mampu/

M. Modianus Laia, F. N. Hasan, and A. Y. Kuntoro, “Analisis Sentimen Program Makan Gratis Pada Platform X Menggunakan Algoritma Naïve Bayes,” Jl. Kramat Raya No, vol. 98, 2025, [Online]. Available: https://ejournal.upbatam.ac.id/index.php/jif/article/view/10427/4495

T. P. Pinasti and L. M. Alfarizi, “Journal Juridisch,” vol. 3, no. 2, pp. 130–141, 2025, doi: 10.26623/jj.v3i2.12285.

D. Purnamasari et al., Pengantar Metode Analisis Sentimen. 2023. [Online]. Available: https://penerbit.gunadarma.ac.id/2023/09/13/pengantar-metode-analisis-sentimen/

H. E. Dwi et al., Pengantar Manajemen. 2023. [Online]. Available: https://penerbiteureka.com/2025/03/08/pengantar-manajemen-6/

Y. YUNITASARI, “TEORI DAN IMPLEMENTASI ANALISIS SENTIMEN MENGGUNAKAN PYTHON,” vol. 32, no. 3, pp. 167–186, 2023, [Online]. Available: https://eprint.unipma.ac.id/3140/

A. Agustian, T. Tukiro, and F. Nurapriani, “Penerapan Analisis Sentimen Dan Naive Bayes Terhadap Opini Penggunaan Kendaraan Listrik Di Twitter,” J. TIKA, vol. 7, no. 3, pp. 243–249, 2022, doi: 10.51179/tika.v7i3.1550.

Ernianti Hasibuan and Elmo Allistair Heriyanto, “Analisis Sentimen Pada Ulasan Aplikasi Amazon Shopping Di Google Play Store Menggunakan Naive Bayes Classifier,” J. Tek. dan Sci., vol. 1, no. 3, pp. 13–24, 2022, doi: 10.56127/jts.v1i3.434.

P. G. Aryanti and I. Santoso, “Analisis Sentimen Pada Twitter Terhadap Mobil Listrik Menggunakan Algoritma Naive Bayes,” IKRA-ITH Inform. J. Komput. dan Inform., vol. 7, no. 2, pp. 133–137, 2023, [Online]. Available: https://journals.upi-yai.ac.id/index.php/ikraith-informatika/article/view/2821

Syahril Dwi Prasetyo, Shofa Shofiah Hilabi, and Fitri Nurapriani, “Analisis Sentimen Relokasi Ibukota Nusantara Menggunakan Algoritma Naïve Bayes dan KNN,” J. KomtekInfo, vol. 10, pp. 1–7, 2023, doi: 10.35134/komtekinfo.v10i1.330.

H. Eni Tri and S. Ari, “Analisis Sentimen Respon Masyarakat Terhadap Kabar Harian Covid-19 Pada Twitter Kementerian Kesehatan,” J. Teknol. dan Sist. Inf., vol. 2, no. 3, pp. 32–37, 2022, [Online]. Available: http://repository.teknokrat.ac.id/3224/

A. I. Tanggraeni and M. N. N. Sitokdana, “Analisis Sentimen Aplikasi E-Government pada Google Play Menggunakan Algoritma Naïve Bayes,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 9, no. 2, pp. 785–795, 2022, doi: 10.35957/jatisi.v9i2.1835.

F. T. A. Meidyan Permata Putri, Guntoro Barovih, Rezania Agramanisti Azdy, Yuniansyah, Andri Saputra, Yesi Sriyeni, Arsia Rini, Algoritma dan Atruktur Data. 2022.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Analisis Sentimen Program Makan Bergizi Gratis pada Podcast Bocor Alus Politik dengan Algoritma Naive Bayes

Dimensions Badge

ARTICLE HISTORY


Published: 2025-12-31
Abstract View: 26 times
PDF Download: 21 times

Most read articles by the same author(s)