Penerapan Model Transfer Learning Dalam Mendalami Penyakit Daun Jagung Menggunakan Arsitektur VGG19


Authors

  • Setiyo Adi Wibowo Universitas Bina Insan, Kota Lubukliggau, Indonesia
  • Rudi Kurniawan Universitas Bina Insan, Kota Lubukliggau, Indonesia
  • Budi Santoso Universitas Bina Insan, Kota Lubukliggau, Indonesia

DOI:

https://doi.org/10.47065/jieee.v5i1.2702

Keywords:

Prediction; Corn Leaf Disease; Transfer Learning; VGG 19 Architecture

Abstract

The process of processing corn leaf disease data using the VGG 19 architecture based on deep learning is to analyze corn leaf diseases that result in low yields. In describing the values to be managed in this study, a digital image dataset of corn leaf diseases consisting of 5 classes with 3923 images per class was used. The objectives of this study are to enable easy prediction of corn leaf disease and to treat the disease. It also aims to enable pattern recognition of corn leaf disease based on digital images using the VGG19 architecture model. The results of corn leaf disease classification obtained from the VGG19-based model show excellent performance in identifying various plant health conditions. With an overall accuracy of 97.96%, this model successfully distinguishes between five disease classes, namely Common Rust, Grey Leaf Spot, Healthy, Northern Leaf Blight, and Northern Leaf Spot. This figure reflects the effectiveness of the model in recognizing the distinctive visual patterns of each disease, which is very important for effective crop management.

Downloads

Download data is not yet available.

References

A. Abdiansyah, B. Baharuddin, dan M. Sulkifly Said, “Klasifikasi Jenis Beras Menggunakan Metode Convolutional Neural Network Pada Arsitektur Mobilenet,” Simtek J. Sist. Inf. dan Tek. Komput., vol. 9, no. 2, hal. 299–305, 2024, doi: 10.51876/simtek.v9i2.1334.

F. N. Darmawan, E. P. Silmina, dan T. Hardiani, “Sistem Klasifikasi Penyakit Kulit Menggunakan Metode Convolutional Neural Network (CNN) Berbasis Website,” Pros. Semin. Nas. Penelit. dan Pengabdi. Kpd. Masy., vol. 2, no. 2, hal. 871–881, 2024.

A. Ibnul Rasidi, Y. A. H. Pasaribu, A. Ziqri, dan F. D. Adhinata, “Klasifikasi Sampah Organik dan Non-Organik Menggunakan Convolutional Neural Network,” J. Tek. Inform. dan Sist. Inf., vol. 8, no. 1, hal. 142–149, 2022, doi: 10.28932/jutisi.v8i1.4314.

A. E. Putra, K. Kartini, dan A. P. Sari, “Metode Convolutional Neural Network dan Extreme Gradient Boost untuk Mengklasifikasi Penyakit Pneumonia,” JASIEK (Jurnal Apl. Sains, Informasi, Elektron. dan Komputer), vol. 6, no. 1, hal. 33–40, 2024, doi: 10.26905/jasiek.v6i1.11464.

D. A. Budi, “Perancangan Sistem Login pada Aplikasi Berbasis GUI Menggunakan Qtdesigner Python,” J. SIMADA (Sistem Inf. dan Manaj. Basis Data), vol. 4, no. 2, hal. 92–100, 2021, doi: 10.30873/simada.v4i2.2961.

N. Bangkit Indarmawan, M. M. Yoshananda, dan A. Zaenul, “Analisa Hierarki Tipografi Pada Ui Web Menggunakan Hitungan Fibonacci Dengan Aplikasi Adobe Illustrator,” Insect (Informatics Secur. J. Tek. Inform., vol. 11, no. 1, hal. 25–33, 2025, doi: 10.33506/insect.v11i1.4215.

N. IBRAHIM et al., “Klasifikasi Tingkat Kematangan Pucuk Daun Teh menggunakan Metode Convolutional Neural Network,” ELKOMIKA J. Tek. Energi Elektr. Tek. Telekomun. Tek. Elektron., vol. 10, no. 1, hal. 162, 2022, doi: 10.26760/elkomika.v10i1.162.

AL Sigit Guntoro, Edy Julianto, dan Djoko Budiyanto, “Pengenalan Ekspresi Wajah Menggunakan Convolutional Neural Network,” J. Inform. Atma Jogja, vol. 3, no. 2, hal. 155–160, 2022, doi: 10.24002/jiaj.v3i2.6790.

E. A. Nugroho, D. Mulyadi, dan Nanang Roni wibowo, “Sistem Klasifikasi Citra untuk Proses Inspeksi Kain Menggunakan Teachable Machine dan Raspberry Pi,” J. Teknol., vol. 14, no. 1, hal. 49–60, 2024, doi: 10.51132/teknologika.v14i1.368.

G. Gumelar et al., “Jurnal Computer Science and Information Technology ( CoSciTech ) Implentation of CNN for Corn Leaf Disease Identification,” vol. 6, no. 2, hal. 175–180, 2025.

E. Zidni dan M. Akbar, “Klasifikasi Citra Makanan Khas Kota Pasuruan menggunakan Convolutional Neural Network,” Informatics Artif. Intell. J., vol. 1, no. 2, hal. 65–72, 2024, [Daring]. Tersedia pada: http://jurnal.forai.or.id/index.php/forai/article/view/10

R. Rahayu, “Rancang Bangun Smart Traffic Light DenganComputer Vision Sebagai OptimalisasiPengaturan Lalu Lintas,” no. 32, 2023.

L. R. Aisyah, M. Azka, A. Musthofa, dan K. Yulianto, “Perancangan Aplikasi Alat Uji Motor Listrik UAV Berbasis Graphic User Interface (GUI) Menggunakan Software Python,” Aviat. Sci. Technol. J., vol. 1, no. 01, hal. 20–26, 2024, doi: 10.54147/astj.v1i01.1022.

M. Yusuf, R. Ruimassa, A. I. Tawainella, dan D. Maharani, “Klasifikasi Kualitas Beras Menggunakan Convolutional Neural Network Berbasis Android,” J. Komput. dan Inform., vol. 12, no. 2, hal. 186–192, 2024, doi: 10.35508/jicon.v12i2.18004.

Imam Fathurrahman, Mahpuz, Muhammad Djamaluddin, Lalu Kerta Wijaya, dan Ida Wahidah, “Pengembangan Model Convolutional Neural Network (CNN) untuk Klasifikasi Penyakit Kulit Berbasis Citra Digital [Development of Convolutional Neural Network (CNN) Model for Skin Disease Classification Based on Digital Images],” Infotek J. Inform. dan Teknol., vol. 8, no. 1, hal. 298–308, 2025.

W. Tarasiuk dan K. Halicka, “Artificial intelligence in manufacturing – systematic literature review,” Sci. Pap. Silesian Univ. Technol. Organ. Manag. Ser., vol. 2025, no. 215, 2025, doi: 10.29119/1641-3466.2025.215.39.

H. Rahman, R. S. D’Cruze, M. U. Ahmed, R. Sohlberg, T. Sakao, dan P. Funk, “Artificial Intelligence-Based Life Cycle Engineering in Industrial Production: A Systematic Literature Review,” IEEE Access, vol. 10, no. December, hal. 133001–133015, 2022, doi: 10.1109/ACCESS.2022.3230637.

S. Sriani dan A. Nabila, “Implementasi Deep Learning Untuk Mengidentifikasi Umur Manusia Menggunakan Convolutional Neural Network (Cnn),” J. Inform. dan Tek. Elektro Terap., vol. 12, no. 3, hal. 1836–1843, 2024, doi: 10.23960/jitet.v12i3.4457.

M. Nur, B. Rahman, C. Cakra, A. Patombongi, S. Samsuddin, dan F. Kahar, “Mendeteksi Dan Mengklasifikasi Penyakit Daun Pada Tanaman Jagung Menggunakan Jaringan Saraf Konvolusional,” Simtek J. Sist. Inf. dan Tek. Komput., vol. 10, no. 1, hal. 94–99, 2025, doi: 10.51876/simtek.v10i1.1498.

T. Informasi, M. Sandi, dan M. Knn, “Jurnal Pengembangan Sistem Deteksi Hand Gesture untuk Mempermudah Development of Hand Gesture Detection System to,” vol. 12, no. 1, hal. 31–40, 2025.

R. Ronal dan Y. Yuliana, “Penerapan Algoritma K-Nearest Neighbor (KNN) dalam Penerjemahan Bahasa Isyarat bagi Penyandang Disabilitas Tunarungu,” J. Pustaka AI (Pusat Akses Kaji. Teknol. Artif. Intell., vol. 5, no. 1, hal. 30–34, 2025, doi: 10.55382/jurnalpustakaai.v5i1.906.

B. Widianto, E. Utami, dan D. Ariatmanto, “Identifikasi Penyakit Tanaman Jagung Berdasarkan Citra Daun Menggunakan Convolutional Neural Network,” Techno.Com, vol. 22, no. 3, hal. 599–608, 2023, doi: 10.33633/tc.v22i3.8425.

I. Wirabowo dan I. Susilawati, “Implementasi Convolution Neural Network (CNN) untuk Deteksi Penyakit pada Daun Jagung Berbasis Citra Digital,” J. Pustaka Data (Pusat Akses Kaji. Database, Anal. Teknol. dan Arsit. Komputer), vol. 5, no. 1, hal. 233–241, 2025, doi: 10.55382/jurnalpustakadata.v5i1.1046.

M. S. Pramono dan A. P. Wibowo, “Penerapan Convolutional Neural Network Untuk Identifikasi Penyakit Pada Tanaman Padi Dari Citra Daun Menggunakan Model Resnet-101,” Djtechno J. Teknol. Inf., vol. 5, no. 3, hal. 415–430, 2024, doi: 10.46576/djtechno.v5i3.5098.

M. Yusuf, Khoirunnisa, D. Kurniawan, dan T. Agustin, “Klasifikasi penyakit tanaman jagung dengan kecerdasan buatan berbasis CNN,” Semin. Nas. AMIKOM Surakarta, no. November, hal. 355–368, 2024.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Penerapan Model Transfer Learning Dalam Mendalami Penyakit Daun Jagung Menggunakan Arsitektur VGG19

Dimensions Badge

ARTICLE HISTORY


Published: 2025-09-20
Abstract View: 86 times
PDF Download: 42 times