Pemodelan Prediksi Volume Penumpang Transjakarta Menggunakan Regresi Pada Algoritma Machine Learning


Authors

  • Ilham Maulana Wijaya Universitas Bina Sarana Informatika, Jakarta, Indonesia
  • Andi Taufik Universitas Bina Sarana Informatika, Jakarta, Indonesia

DOI:

https://doi.org/10.47065/jieee.v5i1.2648

Keywords:

Transjakarta; Passenger Volume Prediction; Regression; Machine Learning; Gradient Boosted Trees

Abstract

The rapid population growth and urbanization in Jakarta pose significant challenges to the provision of efficient public transportation, particularly for Transjakarta, which often experiences fluctuating passenger volumes that complicate capacity management and operational efficiency. This study aims to model and predict Transjakarta passenger volumes using regression methods within machine learning algorithms, by comparing three models: Linear Regression, Random Forest Regression, and Gradient Boosted Trees Regression. The dataset consists of historical passenger records from routes S21 (Ciputat–CSW/Tosari) and S22 (Ciputat–Kampung Rambutan) covering the period from January 2022 to March 2025. The data were processed through several stages, including preprocessing, categorical variable transformation, train-test splitting, and model evaluation using Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and the coefficient of determination (R²). The results show that Gradient Boosted Trees Regression achieved the best predictive performance with an R² of 0.73 and an average error of approximately 22,000 passengers, outperforming Linear Regression (R² = 0.65) and Random Forest Regression (R² = 0.63). These findings highlight that ensemble boosting is more effective in capturing non-linear patterns in passenger data, making it the most suitable predictive model to support operational planning, fleet efficiency, and the development of adaptive and sustainable public transportation policies.

Downloads

Download data is not yet available.

References

F. Jauregui-Fung, “BRT Transjakarta: Phasing in, Performing and Expanding a New System within a consolidated urban area,” 2022, doi: 10.23661/r6.2022.

S. Hidayat and R. Mesra, “Studi Kasus Pelayanan dan Kualitas Busway Transjakarta,” COMTE J. Sociol. Res. Educ., vol. 1, no. 1, pp. 26–31, 2024, doi: 10.64924/yg5xpr71.

Y. Aprilia, “Analisis Peningkatan Efektivitas Transportasi Umum (Transjakarta),” Pros. SEMDIKJAR (Seminar Nas. …, vol. 6, pp. 1598–1601, 2023, doi: 10.29407/1wyk5h36.

T. Nurholipah, R. Kurniawan, and Y. A. Wijaya, “Evaluasi Performa Model Regresi Linear Dengan Rmse Pada Jumlah Penumpang Bus Transjakarta,” JIKA (Jurnal Inform., vol. 8, no. 2, p. 180, 2024, doi: 10.31000/jika.v8i2.10405.

E. Hasibuan et al., “Implementasi Machine Learning untuk Prediksi Harga Mobil Bekas dengan Algoritma Regresi Linear berbasis Web,” J. Ilm. Komputasi, vol. 21, no. 4, pp. 595–602, 2022, doi: 10.32409/jikstik.21.4.3327.

N. Almumtazah, N. Azizah, Y. L. Putri, and D. C. R. Novitasari, “Prediksi Jumlah Mahasiswa Baru Menggunakan Metode Regresi Linier Sederhana,” J. Ilm. Mat. Dan Terap., vol. 18, no. 1, pp. 31–40, 2021, doi: 10.22487/2540766x.2021.v18.i1.15465.

E. Fitri, “Analisis Perbandingan Metode Regresi Linier, Random Forest Regression dan Gradient Boosted Trees Regression Method untuk Prediksi Harga Rumah,” J. Appl. Comput. Sci. Technol., vol. 4, no. 1, pp. 58–64, 2023, doi: 10.52158/jacost.v4i1.491.

A. F. A. Naibaho and A. Zahra, “Prediksi Kelulusan Siswa Sekolah Menengah Pertama Menggunakan Machine Learning,” J. Inform. dan Tek. Elektro Terap., vol. 11, no. 3, 2023, doi: 10.23960/jitet.v11i3.3056.

N. K. Zainal, “Prediksi Harga Real Estate Menggunakan Metode Regresi Linear Berbasis Machine Learning,” J. Artif. Intell. Appl., vol. 1, no. 1, pp. 19–27, 2024, [Online]. Available: https://jurnal.mutiaraamaliyah.com/index.php/jaia/article/view/5%0Ahttps://jurnal.mutiaraamaliyah.com/index.php/jaia/article/download/5/9

N. Syakrani and N. A. S. R, “JOURNAL OF APPLIED COMPUTER SCIENCE AND TECHNOLOGY ( JACOST ) Konsistensi Model Regresi Empat Variabel Pada Populasi dan Sampel untuk Prediksi Temperatur,” vol. 6, no. 1, pp. 9–16, 2025, doi: 10.52158/jacost.v6i1.971.

I. Amansyah, J. Indra, E. Nurlaelasari, and A. R. Juwita, “Prediksi Penjualan Kendaraan Menggunakan Regresi Linear: Studi Kasus pada Industri Otomotif di Indonesia,” J. Soc. Sci. Res., vol. 4, no. 4, pp. 1199–1216, 2024, doi: 10.31004/innovative.v4i4.12735.

M. R. Athallah and A. F. Rozi, “Implementasi Data Mining Untuk Prediksi Peramalan Penjualan Produk Hj Karpet Menggunakan Metode Linear Regression,” J. Sains dan Teknol., vol. 2, no. 3, pp. 180–187, 2023, doi: 10.47233/jsit.v2i3.550.

T. O. Hodson, “Root-mean-square error (RMSE) or mean absolute error (MAE): when to use them or not,” Geosci. Model Dev., vol. 15, no. 14, pp. 5481–5487, 2022, doi: 10.5194/gmd-15-5481-2022.

D. Assayakurrohim, D. Ikhram, R. a Sirodj, and M. W. Afgani, “Jurnal pendidikan sains dan komputer metode studi kasus dalam penelitian kualitatif jurnal pendidikan sains dan komputer,” J. Pendidik. sains dan Komput., vol. 3, no. 1, pp. 1–9, 2023, doi: 10.47709/jpsk.v3i01.1951.

P. F. A. Tambuwun, N. Nainggolan, and Y. A. R. Langi, “d ’ CartesiaN Jurnal Matematika dan Aplikasi Peramalan Banyaknya Penumpang Bandar Udara Internasional Sam Ratulangi Manado Dengan Metode Winter ’ s Exponential Smoothing dan Seasonal ARIMA,” vol. 12, no. 1, pp. 14–20, 2023, doi: 10.35799/dc.12.1.2023.48066.

Muhammmad Faiq Abdi and Yonhendri, “Implementasi Sistem Prediksi Saham Real-Time dengan Integrasi Yahoo Finance API dan Machine Learning di Google Colab,” El-Mujtama J. Pengabdi. Masyarakat , vol. 5, no. 3, pp. 25–31, 2025, doi: 10.47467/elmujtama.v5i3.7379.

M. Sholeh, Y. Rachmawati, and E. N. Cahyo, “Penerapan Regresi Linear Ganda Untuk Memprediksi Hasil Nilai Kuesioner Mahasiswa Dengan Menggunakan Python,” J. Din. Inform., vol. 11, no. 1, pp. 13–24, 2022.

A. T. Nurani, A. Setiawan, and B. Susanto, “Perbandingan Kinerja Regresi Decision Tree dan Regresi Linear Berganda untuk Prediksi BMI pada Dataset Asthma,” J. Sains dan Edukasi Sains, vol. 6, no. 1, pp. 34–43, 2023, doi: 10.24246/juses.v6i1p34-43.

K. Alfikrizal, S. Defit, and Y. Yunus, “Simulasi Monte Carlo dalam Prediksi Jumlah Penumpang Angkutan Massal Bus Rapid Transit Kota Padang,” J. Inform. Ekon. Bisnis, vol. 3, no. 2, pp. 78–83, 2020, doi: 10.37034/infeb.v3i2.72.

B. W. Sari and D. Prabowo, “Analisis Perbandingan Prediksi Harga Rumah Dengan Random Forest , Gradient Boosting , dan XGBoost,” vol. 04, no. 01, pp. 42–51, 2025.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Pemodelan Prediksi Volume Penumpang Transjakarta Menggunakan Regresi Pada Algoritma Machine Learning

Dimensions Badge

ARTICLE HISTORY


Published: 2025-09-30
Abstract View: 99 times
PDF Download: 42 times