Penerapan Data Mining Menggunakan Algoritma K-Means Untuk Analisa Penjualan Parfume
DOI:
https://doi.org/10.47065/jieee.v2i4.1181Keywords:
IM Parfume Store; Sales; Data Mining; Algorithm; K-MeansAbstract
Abstract?IM Perfume Rantauprapat store is a shop that offers various types of perfume scents under the IM brand. Even though it provides a wide range of choices, not all types of perfume sell quickly, some are in demand and some are less desirable. Data on sales, purchases and expenses at the store is irregular, so that the data only functions as an archive without being used for developing marketing strategies. The data that has been collected should be used as a decision-making system to solve business problems. To achieve this, the authors designed a data mining application in this study with the hope of providing maximum and effective results in analyzing perfume sales at the IM Parfume Rantauprapat store. The application of Data Mining with the K-Means Algorithm is proven to provide the best analysis and be a solution in developing the perfume business. Through clustering modeling with the K-Means algorithm and by dividing the number of clusters into 3, rapidminer succeeded in forming three clusters, where cluster 1 consisted of 9 products, cluster 2 had 3 products, and cluster 3 had 13 products out of a total of 25 product items observed
Downloads
References
S. Nurajizah and A. Salbinda, “Penerapan Data Mining Metode K-Means Clustering Untuk Analisa Penjualan Pada Toko Fashion Hijab Banten,” J. Tek. Komput. AMIK BSI, vol. 7, no. 2, pp. 158–163, 2021, doi: 10.31294/jtk.v4i2.
M. S. Lestari Sinaga, Abdullah Ahmad, “PENERAPAN DATA MINING PADA JUMLAH PELANGGAN PERUSAHAAN AIR BERSIH MENURUT PROVINSI MENGGUNAKAN METODE K-MEANS CLUSTERING,” RESISTOR, vol. 2, no. 2, pp. 119–125, 2019.
S. A. Windania Purba, Willy Siawin, Hardih, Marlince NK Nababan, N P Dharshinni, “IMPLEMENTASI DATA MINING UNTUK PENGELOMPOKKAN DAN PREDIKSI KARYAWAN YANG BERPOTENSI PHK DENGAN,” JUSIKOM PRIMA, vol. 2, no. 1, 2018.
P. S. Hasugian, “PENERAPAN DATA MINING UNTUK KLASIFIKASI PRODUK MENGGUNAKAN ALGORTIMA K-MEANS,” Mantik Penusa, vol. 2, no. 2, pp. 191–198, 2018.
Z. A. Zulfa Nabila, Auliya Rahman Isnain, Permata, “ANALISIS DATA MINING UNTUK CLUSTERING KASUS COVID-19,” Teknol. dan Sist. Inf., vol. 2, no. 2, pp. 100–108, 2021.
A. Darmawan, N. Kustian, W. Rahayu, T. Tabebuya, and K. Pengunjung, “IMPLEMENTASI DATA MINING MENGGUNAKAN MODEL SVM,” J. String, vol. 2, no. 3, pp. 299–307, 2018.
A. Bastian et al., “PENERAPAN ALGORITMA K-MEANS CLUSTERING ANALYSIS PADA PENYAKIT MENULAR MANUSIA (STUDI KASUS KABUPATEN MAJALENGKA),” J. Sist. Inf., no. 1, pp. 26–32, 2018.
R. Novianto and L. Goeirmanto, “Penerapan Data Mining Menggunakan Algoritma K-Means Clustering untuk Menganalisa Bisnis Perusahaan Asuransi,” J. Tek. Inform. dan Sist. Inf., vol. 6, no. 1, pp. 85–95, 2019.
P. Muhamad Iqbal Ramadhan, “PENERAPAN DATA MINING UNTUK ANALISIS DATA BENCANA MILIK BNPB MENGGUNAKAN ALGORITMA,” J. Inform. dan Komput., vol. 22, no. 1, pp. 57–65, 2017.
Y. D. Gustientiedina, M.Hasmil Adiya, “Penerapan Algoritma K-Means Untuk Clustering Data Obat-Obatan Pada RSUD Pekanbaru,” J. Nas. Teknol. dan Sist. Inf., vol. 01, pp. 17–24, 2019.
C. W. Randi Rian Putra, “IMPLEMENTASI DATA MINING PEMILIHAN PELANGGAN POTENSIAL MENGGUNAKAN ALGORITMA K-MEANS,” Intecoms, vol. 1, no. 1, pp. 72–77, 2018.
F. Yunita, “PENERAPAN DATA MINING MENGGUNKAN ALGORITMA K-MEANS CLUSTRING PADA PENERIMAAN MAHASISWA BARU (STUDI KASUS?: UNIVERSITAS ISLAM INDRAGIRI),” J. Sist., vol. 7, no. 3, pp. 238–249, 2018.
N. Rofiqo et al., “PENERAPAN CLUSTERING PADA PENDUDUK YANG MEMPUNYAI KELUHAN KESEHATAN DENGAN DATAMINING K-MEANS,” KOMIK, vol. 2, no. 1, pp. 216–223, 2018.
S. N. Arofah, F. Marisa, P. Studi, T. Informatika, and U. W. Malang, “Penerapan Data Mining untuk Mengetahui Minat Siswa pada Pelajaran Matematika menggunakan Metode K-Means Clustering,” J. Inf. Technol. Comput. Sci., vol. 3, no. 2, pp. 85–90, 2018, doi: 10.31328/jointecs.v3i2.787.
M. R. Alhapizi, M. Nasir, and I. Effendy, “Penerapan Data Mining Menggunakan Algoritma K-Means Clustering Untuk Menentukan Strategi Promosi Mahasiswa Baru Universitas Bina Darma Palembang,” J. Softw. Eng. Ampera, vol. 1, no. 1, pp. 1–14, 2020.
E. W. Tuti Hartati, Odi Nurdiawan, “Analisis dan penerapan algoritma k-means dalam strategi promosi kampus akademi maritim suaka bahari,” J. Sains Teknol. Transp. Marit., vol. 3, no. 1, pp. 1–7, 2021.
R. W. Sari and D. Hartama, “Data Mining: Algoritma K-Means Pada Pengelompokkan Wisata Asing ke Indonesia Menurut Provinsi,” in Seminar Nasional Sains dan Teknologi Informasi (SENSASI), 2018, vol. 1, no. 1.
R. F. P. D. Ikhsan Romli, “PENERAPAN DATA MINING MENGGUNAKAN ALGORITMA K-MEANS UNTUK KLASIFIKASI PENYAKIT ISPA,” IJUBI, vol. 4, no. 1, pp. 10–15, 2021.
A. P. W. Kiki Fatmawat1, “PENERAPAN RAPIDMINER DENGAN K-MEANS CLUSTER PADA DAERAH TERJANGKIT DEMAM BERDARAH DENGUE ( DBD ) BERDASARKAN PROVINSI,” CESS (Journal Comput. Eng. Syst. Sci., vol. 3, no. 2, pp. 173–178, 2018.
M. A. W. K. MURTI, “UNTUK MENGELOMPOKAN POTENSI PRODUKSI BUAH – BUAHAN DI PROVINSI DAERAH ISTIMEWA YOGYAKARTA,” UNIVERSITAS SANATA DHARMA YOGYAKARTA, Yogyakarta, 2017.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Penerapan Data Mining Menggunakan Algoritma K-Means Untuk Analisa Penjualan Parfume
ARTICLE HISTORY
Issue
Section
Copyright (c) 2023 Restu Riadi, Mesran

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).