Analisis Sentimen Pengguna Aplikasi CapCut Pada Ulasan di Play Store Menggunakan Metode Naïve Bayes
DOI:
https://doi.org/10.30865/klik.v4i4.1555Keywords:
CapCut; Naïve Bayes; Confusion Matrix; Play Store; Sentiment AnalysisAbstract
There is an increasing interest in sharing experiences displayed in video visualizations, creating a demand for efficient and simple editing tools. CapCut is an all-in-one creative digital platform that enables video editing on browser, desktop and mobile. The CapCut app is one of the most downloaded apps on the Play Store with 500 million downloads and is available for free. CapCut app is perfect for beginner editors as it has a simple interface with various interesting features such as templates that are easy to operate without the need for additional software. However, this cannot guarantee the satisfaction of its users. Various experiences that are felt affect the assessment given by users. Sentiment analysis is important to determine the level of user satisfaction, the results of which can be used as a reference for improving the quality of the application. To find out user reviews of the CapCut application, sentiment analysis is carried out using the Naïve Bayes method with the aim of knowing the number of positive and negative sentiments from user reviews. The data used is taken from the review column available on the Play Store using web scrapping techniques with the help of Google Colab as much as 880 user review data. The data is divided into 60% training data which is 528 reviews and 40% test data which is 352 reviews. The analysis resulted in 30 more negative sentiments than positive sentiments with the number of negative sentiments totaling 455 reviews and the number of positive sentiments totaling 425 reviews. Based on the evaluation using confusion matrix, the accuracy result is 84.09%, precision is 91.91%, and recall is 73.53%.
Downloads
References
F. A. Indriyani, A. Fauzi, and S. Faisal, “Analisis Sentimen Aplikasi Tiktok Menggunakan Algoritma Naïve Bayes Dan Support Vector Machine,” TEKNOSAINS?: Jurnal Sains, Teknologi dan Informatika, vol. 10, no. 2, pp. 176–184, Jul. 2023, doi: 10.37373/tekno.v10i2.419.
U. Yudatama et al., Memahami Teknologi Informasi: Prinsip, Pengembangan, dan Penerapan. Kaizen Media Publishing, 2023.
A. R. Abdillah and F. N. Hasan, “Analisis Sentimen Terhadap Kandidat Calon Presiden Berdasarkan Tweets Di Sosial Media Menggunakan Naive Bayes Classifier,” SMATIKA?: STIKI Informatika Jurnal, vol. 13, no. 1, pp. 117–130, Jul. 2023, doi: 10.32664/smatika.v13i01.750.
I. D. Rahayu, “Penerapan Aplikasi Capcut Untuk Meningkatkan Keterampilan Berbicara Bahasa Inggris Kelas IX-A SMP Negeri 2 Gudo,” Jurnal PETISI, vol. 03, no. 02, pp. 44–50, 2022, doi: 10.36232/jurnalpetisi.v3i2.2585.
D. Nurdiansyah, P. Handayani, and F. Zabadi, “Peningkatan Skill Editing Video Karang Taruna Menggunakan Aplikasi Mobile Phone CapCut Di Desa Lengkong Kulon,” Communnity Development Journal, vol. 4, no. 3, pp. 5572–5580, 2023, doi: 10.31004/cdj.v4i3.17082.
V. Wijaya, N. Sitompul, U. H. Mulyanto, and S. Wahyuni, “Pelatihan Editing Video Menggunakan Aplikasi Smartphone CapCut Bagi Ibu-Ibu Gabungan Organisasi Wanita Sambas,” Jurnal Pengabdian kepada Masyarakat Nusantara (JPkMN), vol. 4, no. 2, pp. 1343–1351, 2023, doi: 10.55338/jpkmn.v4i2.980.
K. Anam, “Perancangan Video Promosi Iklan Indomie Menggunakan Aplikasi Ibispaint X, Flipaclip, Dan Capcut,” Jurnal Sistem Informasi dan Teknologi Informasi, vol. 1, no. 3, pp. 10–18, 2022, doi: 10.1234/siti.v1i3.123.
M. Riski, M. Fikry, and Yusra, “Klasifikasi Sentimen Ulasan Aplikasi WhatsApp di Play Store Menggunakan Metode K-Nearest Neighbor,” KLIK (Kajian Ilmiah Informatika dan Komputer), vol. 4, no. 1, pp. 438–444, 2023, doi: 10.30865/klik.v4i1.1050.
Y. W. S. Putra et al., Pengantar Aplikasi Mobile. Haura Utama, 2023.
A. I. Tanggraeni and M. N. N. Sitokdana, “Analisis Sentimen Aplikasi E-Government Pada Google Play Menggunakan Algoritma Naïve Bayes,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 9, no. 2, pp. 785–795, 2022, doi: 10.35957/jatisi.v9i2.1835.
N. Q. Rizkina and F. N. Hasan, “Analisis Sentimen Komentar Netizen Terhadap Pembubaran Konser NCT 127 Menggunakan Metode Naive Bayes,” Journal of Information System Research, vol. 4, no. 4, pp. 1136–1144, 2023, doi: 10.47065/josh.v4i4.3803.
M. Khoirul, U. Hayati, and O. Nurdiawan, “Analisis Sentimen Aplikasi BRImo Pada Ulasan Pengguna Di Google Play Menggunakan Algoritma Naive Bayes,” Jurnal Mahasiswa Teknik Informatika, vol. 7, no. 1, pp. 478–482, 2023, doi: 10.36040/jati.v7i1.6373.
M. T. Nitami and H. Februariyanti, “Analisis Sentimen Ulasan Ekspedisi J&T Express Menggunakan Algoritma Naïve Bayes,” Jurnal Manajemen Informatika & Sistem Informasi (MISI), vol. 5, no. 1, pp. 20–29, 2022, doi: 10.36595/misi.v5i1.396.
L. O. Sihombing, H. Hannie, and B. A. Dermawan, “Sentimen Analisis Customer Review Produk Shopee Indonesia Menggunakan Algortima Naïve Bayes Classifier,” Edumatic: Jurnal Pendidikan Informatika, vol. 5, no. 2, pp. 233–242, Dec. 2021, doi: 10.29408/edumatic.v5i2.4089.
D. Duei Putri, G. F. Nama, and W. E. Sulistiono, “Analisis Sentimen Kinerja Dewan Perwakilan Rakyat (DPR) Pada Twitter Menggunakan Metode Naive Bayes Classifier,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 10, no. 1, pp. 34–40, Jan. 2022, doi: 10.23960/jitet.v10i1.2262.
A. Erfina and M. Fani Al-shufi, “Analisis Sentimen Aplikasi Jasa Kurir Di Play Store Menggunakan Algoritma Naive Bayes,” Jurnal Sistem Informasi dan Informatika (SIMIKA), vol. 5, no. 2, pp. 103–110, 2022, doi: 10.47080/simika.v5i2.1789.
F. Romadoni, Y. Umaidah, and B. N. Sari, “Text Mining Untuk Analisis Sentimen Pelanggan Terhadap Layanan Uang Elektronik Menggunakan Algoritma Support Vector Machine,” Jurnal Sisfokom (Sistem Informasi dan Komputer), vol. 9, no. 2, pp. 247–253, Jul. 2020, doi: 10.32736/sisfokom.v9i2.903.
E. Yuniar, D. Safiroh, and D. Wahyuningsih, “Implementasi Scrapping Data Untuk Sentiment Analysis Pengguna Dompet Digital dengan Menggunakan Algoritma Machine Learning,” Jurnal Janitra Informatika dan Sistem Informasi, vol. 2, no. 1, pp. 35–42, Apr. 2022, doi: 10.25008/janitra.v2i1.145.
A. Saputra and F. Noor Hasan, “Analisis Sentimen Terhadap Aplikasi Coffee Meets Bagel Dengan Algoritma Naïve Bayes Classifier,” SIBATIK JOURNAL: Jurnal Ilmiah Bidang Sosial, Ekonomi, Budaya, Teknologi, dan Pendidikan, vol. 2, no. 2, pp. 465–474, Jan. 2023, doi: 10.54443/sibatik.v2i2.579.
A. Purnamawati, M. N. Winarto, and M. Mailasari, “Analisis Sentimen Aplikasi TikTok menggunakan Metode BM25 dan Improved K-NN Fitur Chi-Square,” Jurnal Komtika (Komputasi dan Informatika), vol. 7, no. 1, pp. 97–105, May 2023, doi: 10.31603/komtika.v7i1.8938.
A. P. Astuti, S. Alam, and I. Jaelani, “Komparasi Algoritma Support Vector Machine Dengan Naive Bayes Untuk Analisis Sentimen Pada Aplikasi BRImo,” Bangkit Indonesia, vol. 11, no. 2, pp. 1–6, 2022, doi: 10.52771/bangkitindonesia.v11i2.196.
A. Wibowo, F. Noor Hasan, L. Akbar Ramadhan, R. Nurhayati, and dan Arief Wibowo, “Analisis Sentimen Opini Masyarakat Terhadap Keefektifan Pembelajaran Daring Selama Pandemi COVID-19 Menggunakan Naïve Bayes Classifier,” Jurnal Asiimetrik: Jurnal Ilmiah Rekayasa Dan Inovasi, vol. 4, no. 2, pp. 239–248, 2022, doi: 10.35814/asiimetrik.v4i1.3577.
K. Yolanda, Yusra, and M. Fikry, “Klasifikasi Sentimen Ulasan Aplikasi Whatsapp Di Play Store Menggunakan Naïve Bayes Classifier,” J-INTECH (Journal of Information and Technology), vol. 11, no. 1, pp. 1–9, 2023, doi: 10.32664/j-intech.v11i1.867.
I. T. Julianto, D. Kurniadi, M. R. Nashrulloh, and A. Mulyani, “Comparison Of Classification Algorithm And Feature Selection In Bitcoin Sentiment Analysis,” Jurnal Teknik Informatika (JUTIF), vol. 3, no. 3, pp. 739–744, 2022, doi: 10.20884/1.jutif.2022.3.3.343.
A. Safira and F. N. Hasan, “Analisis Sentimen Masyarakat Terhadap Paylater Menggunakan Metode Naive Bayes Classifier,” Jurnal Sistem Informasi, vol. 5, no. 1, pp. 59–70, 2023, doi: 10.31849/zn.v5i1.12856.
D. Darwis, N. Siskawati, and Z. Abidin, “Penerapan Algoritma Naive Bayes Untuk Analisis Sentimen Review Data Twitter BMKG Nasional,” TEKNO KOMPAK, vol. 15, no. 1, pp. 131–145, 2021, doi: 10.33365/jtk.v15i1.744.
M. Raffi, A. Suharso, and I. Maulana, “Analisis Sentimen Ulasan Aplikasi Binar Pada Google Play Store Menggunakan Algoritma Naïve Bayes,” Journal of Information Technology and Computer Science (INTECOMS), vol. 6, no. 1, pp. 451–462, 2023, doi: 10.31539/intecoms.v6i1.6117.
B. Gunawan, H. Sasty Pratiwi, and E. Esyudha Pratama, “Sistem Analisis Sentimen pada Ulasan Produk Menggunakan Metode Naive Bayes,” JEPIN (Jurnal Edukasi dan Penelitian Informatika), vol. 4, no. 2, pp. 17–29, 2018, doi: 10.26418/jp.v4i2.27526.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Analisis Sentimen Pengguna Aplikasi CapCut Pada Ulasan di Play Store Menggunakan Metode Naïve Bayes
ARTICLE HISTORY
Issue
Section
Copyright (c) 2024 Meliyawati, Firman Noor Hasan

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).