Decision-Making System for Determining Tuition Fees using the Simple Additive Weighting Method


Authors

  • Gagah Dwiki Putra Aryono Universitas Bina Bangsa, Serang, Indonesia
  • Kenedi Kenedi Universitas Bina Bangsa, Serang, Indonesia

DOI:

https://doi.org/10.30865/klik.v4i4.1324

Keywords:

Decision-Making System; Simple Additive Weighting; Tuition Fee; Student; Private School

Abstract

This study aims to develop a decision-making system for determining tuition fees using the Simple Additive Weighting (SAW) method. The SAW method is a multi-criteria decision-making technique that calculates the weighted sum of decision alternative attributes. This system is designed to assist school administration in making decisions related to the determination of tuition fees for students, which is a crucial source of funding for school operations. The system was developed using PHP programming language and MySQL database. This study utilized descriptive research methods and data collection techniques such as interviews, observations, and documentation. The collected data were then analyzed using the SAW method to determine the weight of each attribute and rank the decision alternatives. The system's performance was evaluated using black-box testing methods, and the results indicated that the system exhibited excellent accuracy, reliability, and efficiency. The testing results showed that the developed system can assist school administration in making decisions related to the determination of tuition fees for students. The use of this system can simplify the decision-making process and reduce errors in decision-making, thereby enhancing school operational activities

Downloads

Download data is not yet available.

References

K. Czarnecki, T. Korpi, and K. Nelson, “Student support and tuition fee systems in comparative perspective,” Stud. High. Educ., vol. 46, no. 11, pp. 2152–2166, Nov. 2021, doi: 10.1080/03075079.2020.1716316.

A. Mushthofa, A., Munastiwi, E. Dinana, “Manajemen pembiayaan pendidikan berbasis bebas sumbangan pembinaan pendidikan,” J. Akuntabilitas Manaj. Pendidik., vol. 10, no. No. 1, pp. 64–76, 2022.

C. N. Siruru and A. Nugroho, “Pengambilan Keputusan Dengan Mengunakan Metode Simple Additive Weighting (SAW) Untuk Menentukan Pembelian Mesin Tempel,” J. Indones. Manaj. Inform. dan Komun., vol. 4, no. 2, pp. 788–794, May 2023, doi: 10.35870/jimik.v4i2.276.

N. Vafaei, R. A. Ribeiro, and L. M. Camarinha-Matos, “Assessing Normalization Techniques for Simple Additive Weighting Method,” Procedia Comput. Sci., vol. 199, pp. 1229–1236, 2022, doi: 10.1016/j.procs.2022.01.156.

N. A. Khaliq, A. Josi, and L. Fujiyanti, “Sistem Informasi Pendukung Keputusan Seleksi Beasiswa Menggunakan Metode SAW,” JSITIK J. Sist. Inf. dan Teknol. Inf. Komput., vol. 1, no. 2, pp. 94–108, 2023, doi: 10.53624/jsitik.v1i2.162.

F. S. Amalia, “Application of SAW Method in Decision Support System for Determination of Exemplary Students,” J. Inf. Technol. Softw. Eng. Comput. Sci., vol. 1, no. 1, pp. 14–21, Dec. 2022, doi: 10.58602/itsecs.v1i1.9.

M. M. Neumann, J. L. Anthony, N. A. Erazo, and D. L. Neumann, “Assessment and Technology: Mapping Future Directions in the Early Childhood Classroom,” Front. Educ., vol. 4, Oct. 2019, doi: 10.3389/feduc.2019.00116.

E. Ridhawati, E. Erlangga, and Y. Syafitri, “Digitalisasi Sistem Marketing Minyak Nilam Dengan Model Perancangan Berbasis Unified Approach Method,” J. Sains dan Inform., vol. 7, no. 1, pp. 29–35, 2021, doi: 10.22216/jsi.v7i1.304.

F. Febriyanto and I. Rusi, “Penerapan Metode Simple Additive Weighting Dalam Sistem Pendukung Keputusan Pemilihan Smartphones,” IJCIT (Indonesian J. Comput. Inf. Technol., vol. 5, no. 1, pp. 67–74, 2020, doi: 10.31294/ijcit.v5i1.6674.

Z.-G. Zhang, X. Hu, Z.-T. Liu, and L.-T. Zhao, “Multi-attribute decision making: An innovative method based on the dynamic credibility of experts,” Appl. Math. Comput., vol. 393, p. 125816, Mar. 2021, doi: 10.1016/j.amc.2020.125816.

Fandi Aziz and A. S. Purnomo, “Sistem Penunjang Keputusan Penentuan Reward Bagi Mitra Terbaik Menggunakan Metode Simple Additive Weighting (SAW) (Studi Kasus?: PT. Telkom Akses),” J. Fasilkom, vol. 11, no. 2, pp. 91–96, 2021, doi: 10.37859/jf.v11i2.2715.

D. R. Dwiki Putri and M. R. Fahlevi, “Penerapan Metode Simple Additive Weighting(SAW) Dalam Pemilihan Kacamata,” Infosys (Information Syst. J., vol. 5, no. 2, p. 113, 2021, doi: 10.22303/infosys.5.2.2021.113-122.

Y. Irawan, “Decision Support System for Employee Bonus Determination With Web-Based Simple Additive Weighting (Saw) Method in Pt. Mayatama Solusindo,” J. Appl. Eng. Technol. Sci., vol. 2, no. 1, pp. 7–13, 2020, doi: 10.37385/jaets.v2i1.162.

E. Erlangga, Y. Yolandari, T. Thamrin, and A. K. Puspa, “Analisis Penerapan Metode Simple Additive Weighting (SAW) Pemilihan Tanaman Hias,” Explor. Sist. Inf. dan Telemat., vol. 12, no. 1, 2021, doi: 10.36448/jsit.v12i1.2010.

S. Andini, R. Angraini, and S. Enggari, “Sistem Pendukung Keputusan Rekomendasi Smartphone Terbaik Menggunakan Metode Simple Additive Weighting (SAW),” J. KomtekInfo, vol. 8, no. 3, 2021.

L. Liao et al., “Using black-box performance models to detect performance regressions under varying workloads: an empirical study,” Empir. Softw. Eng., vol. 25, no. 5, pp. 4130–4160, Sep. 2020, doi: 10.1007/s10664-020-09866-z.

H. Snyder, “Literature review as a research methodology: An overview and guidelines,” J. Bus. Res., vol. 104, pp. 333–339, Nov. 2019, doi: 10.1016/j.jbusres.2019.07.039.

C. Li, Y. Chen, and Y. Shang, “A review of industrial big data for decision making in intelligent manufacturing,” Eng. Sci. Technol. an Int. J., vol. 29, p. 101021, May 2022, doi: 10.1016/j.jestch.2021.06.001.

C. A. Crespo-Santiago and S. de la C. Dávila-Cosme, “Waterfall method: a necessary tool for implementing library projects,” HETS Online J., vol. 1, no. 2, pp. 81–92, Nov. 2022, doi: 10.55420/2693.9193.v1.n2.91.

T. Thesing, C. Feldmann, and M. Burchardt, “Agile versus Waterfall Project Management: Decision Model for Selecting the Appropriate Approach to a Project,” Procedia Comput. Sci., vol. 181, pp. 746–756, 2021, doi: 10.1016/j.procs.2021.01.227.

N. Vafaei, R. A. Ribeiro, and L. M. Camarinha-Matos, “Assessing Normalization Techniques for Simple Additive Weighting Method,” Procedia Comput. Sci., vol. 199, pp. 1229–1236, 2021, doi: 10.1016/j.procs.2022.01.156.

J. Attieh and J. Tekli, “Supervised term-category feature weighting for improved text classification,” Knowledge-Based Syst., vol. 261, p. 110215, 2023, doi: 10.1016/j.knosys.2022.110215.

Y. J. Wang, “Interval-valued fuzzy multi-criteria decision-making based on simple additive weighting and relative preference relation,” Inf. Sci. (Ny)., vol. 503, pp. 319–335, 2019, doi: 10.1016/j.ins.2019.07.012.

M. Grdini?-Rakonjac and V. Pajkovi?, “The influence of different weighting schemes on the construction of the composite behaviour index,” Transp. Res. Procedia, vol. 69, no. 2022, pp. 85–90, 2023, doi: 10.1016/j.trpro.2023.02.148.

A. Ibrahim and R. A. Surya, “The Implementation of Simple Additive Weighting (SAW) Method in Decision Support System for the Best School Selection in Jambi,” J. Phys. Conf. Ser., vol. 1338, no. 1, 2019, doi: 10.1088/1742-6596/1338/1/012054.

R. K. Dewi, K. C. Brata, T. Afirianto, and E. N. Candra, “Comparison between SAW and Knowledge based SAW in Recipe Recommendation System,” J. Inf. Technol. Comput. Sci., vol. 6, no. 3, pp. 273–280, 2021, doi: 10.25126/jitecs.202163363.

S. Cronholm and H. Göbel, “Action design research: integration of method support,” Int. J. Manag. Proj. Bus., vol. 15, no. 8, pp. 19–47, Dec. 2022, doi: 10.1108/IJMPB-07-2021-0196.

K. Siau, C. Woo, V. C. Storey, R. H. L. Chiang, C. E. H. Chua, and J. W. Beard, “Information Systems Analysis and Design: Past Revolutions, Present Challenges, and Future Research Directions,” Commun. Assoc. Inf. Syst., vol. 50, no. 1, pp. 835–856, 2022, doi: 10.17705/1CAIS.05037.

H. Koç, A. M. Erdo?an, Y. Barjakly, and S. Peker, “UML Diagrams in Software Engineering Research: A Systematic Literature Review,” p. 13, 2021, doi: 10.3390/proceedings2021074013.

T. Ahmad, J. Iqbal, A. Ashraf, D. Truscan, and I. Porres, “Model-based testing using UML activity diagrams: A systematic mapping study,” Comput. Sci. Rev., vol. 33, pp. 98–112, Aug. 2019, doi: 10.1016/j.cosrev.2019.07.001.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Decision-Making System for Determining Tuition Fees using the Simple Additive Weighting Method

Dimensions Badge

ARTICLE HISTORY


Published: 2024-02-29
Abstract View: 349 times
PDF Download: 199 times