KLIK: Kajian Ilmiah Informatika dan Komputer

ISSN 2723-3898 (Media Online) Vol 4, No 1, Agustus 2023, Hal 388-397 DOI 10.30865/klik.v4i1.1165 https://djournals.com/klik

Penerapan Metode Entropy dan WASPAS dalam Rekomendasi Pemilihan Laptop Desain Grafis Terbaik

Gogor Christmass Setyawan^{1,*}, Legito², Indah Kusuna Dewi³, Dahlan Abdullah⁴, Jeperson Hutahaean⁵

¹ Program Studi Teknik Informatika, Universitas Kristen Immanuel, Yogyakarta, Indonesia
 ² Program Studi Teknik Informatika, Sekolah Tinggi Teknologi Sinar Husni, Deliserdang, Sumatera Utara, Indonesia
 ³ Program Studi Teknik Informatika, Universitas Ibnu Sina, Batam, Indonesia
 ⁴ Program Studi Teknik Informatika, Universitas Malikussaleh, Aceh, Indonesia
 ⁵ Program Studi Sistem Informasi, Sekolah Tinggi Manajemen Informatika dan Komputer (STMIK) Royal, Kisaran, Indonesia Email: ^{1,*} masgogor@ukrimuniversity.ac.id, ² legitostt@gmail.com, ⁴dahlan@unimal.ac.id, ⁵jepersonhutahean@gmail.com
 Email Penulis Korespondensi: masgogor@ukrimuniversity.ac.id

Abstrak—Laptop saat ini menjadi salah satu kebutuhan dasar yang semakin berkembang hingga menjadi alat elektronik yang sangat banyak digunakan masyarakat. Laptop memiliki berbagai macam fitur dan spesifikasi yang mendukung untuk kegitatan desain grafis. Laptop yang mendukung dapat mempengaruhi dalam mempelajari bidang desain grafis karena laptop yang memiliki spesifikasi yang sesuai dengan kegiatan akan mempermudah dan menunjang kegiatan sedangkan jika menggunakan laptop yang tidak memiliki spesifikasi yang sesuai maka akan memperhambat kegitan bahkan tidak dapat melakukan kegiatan tersebut. Pengguna yang ingin belajar mengenai desain grafis bingung dalam memilih laptop desain grafis terbaik dari banyaknya pilihan laptop yang ada sekarang ini. Dalam menentukan keputusan pemilihan laptop desain grafis terbaik yang sesuai maka harus dapat memenuhi kriteria antara lain yaitu Processor, RAM, Hardisk, Jenis VGA, Kapasitas VGA, Berat dana Harga. Karena masalah tersebut diperlukan suatu sistem yang dapat menyelesaikan permalahan yang ada yaitu sistem pendukung keputusan dengan mengombinasikan metode ENTROPY dan WASPAS (*Weighted Aggregated Sum Product Assesement*) yang bertujuan memperoleh nilai bobot dan preferensi dari alternatif yang menjadi peringkat pertama. Sehingga yang menjadi rekomendasi laptop desian grafis yaitu RAZER BLADE 15 ADVANCED yang terdapat pada alternatif A4 dengan sebagai rekomendasi pertama dengan nilai tertinggi sebesar 3.79720.

Kata Kunci: SPK; ENTROPY; WASPAS; Laptop; Desain Grafis

Abstract—Laptops are currently one of the basic needs that are growing to become electronic devices that are widely used by the public. Laptops have various features and specifications that support graphic design activities. Supportive laptops can influence studying the field of graphic design because laptops that have specifications that are appropriate to activities will facilitate and support activities, whereas if you use a laptop that does not have the appropriate specifications, it will hinder activities and not even be able to carry out these activities. Users who want to learn about graphic design are confused about choosing the best graphic design laptop from the many choices of laptops currently available. In determining the decision to choose the best suitable graphic design laptop, it must be able to meet the criteria, including Processor, RAM, Hard Drive, VGA Type, VGA Capacity, Weight and Price. Because of this problem, a system is needed that can solve existing problems, namely a decision support system by combining the ENTROPY and WASPAS (Weighted Aggregated Sum Product Assessment) methods which aim to obtain the value and preference weight of the first ranking alternative. So that the recommendation for a graphic design laptop is the RAZER BLADE 15 ADVANCED which is in the A4 alternative with the first recommendation with the highest score of 3.79720.

Keywords: SPK; ENTROPY; WASPAS; Laptop; Graphic Design

1. PENDAHULUAN

Laptop merupakan salah satu kebutuhan dasar untuk masyarakat yang diperlukan untuk memenuhi kegiatan sehari-hari seperti tugas kuliah ataupun pekerjaan. Perkembangan laptop yang semakin berkembang pesat hingga menjadi alat elektronik yang sangat banyak digunakan masyarakat. Semakin banyaknya pengguna yang membutuhkan laptop para produsen laptop memproduksi laptop dengan berbagai spesifikasi mulai dari yang rendah hingga tinggi[1]. Sebagian masyarakat masih belum memahami mengenai spesifikasi laptop, mereka mencari tahu mengenai informasi spesifikasi laptop melalui online atupun offline dengan datang secara langsung ke toko. Dalam memilih laptop pengguna harus menyesuaikan spesifikasi yang sesuai dengan kebutuhan sehinggga tidak salah dalam memilih laptop[2]. Seperti ketika pengguna membeli laptop dengan spesifikasi yang rendah, yang seharusnya hanya dapat pekerjaan yang ringan tetapi digunakan untuk pekerjaan yang berat seperti desain grafis, maka kemungkinan tidak bisa digunakan untuk menunjang kegiatan tersebut[3].

Desain grafis merupakan sebuah seni gambar digital baik 2 dimensi atau 3 dimensi yang dibuat menggunakan komputer atau laptop yang bertujuan dapat digunakan untuk fungsi pakai ataupun hanya sebatas fungsi hiasan[4]. Belajar desain grafis harus menggunakan laptop yang memiliki spesifikasi yang sesuai supaya pekerjaan desain dapat berjalan dengan lancar. Semakin berkembangnya fitur dan spesifikasi laptop sering membuat pengguna yang ingin belajar desain grafis yang tidak memahami spesifikasi laptop bingung dalam memilih laptop yang terbaik. Dalam memilih laptop yang terbaik dan sesuai untuk belajar desain grafis memiliki beberapa tolak ukur kriteria yaitu Jumlah Processor, RAM, Hardisk, Jenis VGA, Kapasitas VGA, Berat dana Harga. Maka diperlukan sistem informasi yang berguna agar dapat mengatur data dan memberikan satu informasi yaitu rekomendasi laptop desain grafis terbaik. Sistem informasi ini disebut juga dengan "Sistem Pendukung keputusan" (SPK).

SPK merupakan suatu sistem yang dapat membantu perusahaan atau organisasi untuk mengambil keputusan terhadap suatu masalah yang dihadapi[5]. Dalam penelitian ini, digunakan metode WASPAS (Weighted Aggregated Sum Product Assesement) dan metode ENTROPY yang dipergunakan untuk memperoleh data yang diperlukan untuk

mendapatkan hasil rekomendasi pemilihan laptop desain grafis terbaik. SPK mempunyai banyak metode untuk mendapatkan nilai bobot serta perangkingan yang bertujuan untuk mempermudah proses dalam memperoleh keputusan yaitu WASPAS, ENTROPY, AHP, SWARA, PSI, WASPAS, ENTROPY, MAUT, MABAC dan lainnya.

Berdasarkan penelitian sebelumnya yang berhubungan dengan kesamaan metode yang sudah dilaksanakan untuk dijadikan bahan acuan pada penelitian ini. Penelitian yang dilakukan oleh Partogi dkk tahun 2022 membahas tentang penerapan metode Oreste dan ENTROPY yang digunakan untuk mengambil keputusan seleksi dokter di RSU Bhakti. Penelitian menggunakan 5 alternatif dan 5 kriteria sehingga menghasilkan alternatif terbaik yaitu Dr. Chistian dengan nilai tertinggi[6]. Penelitian yang dilakukan oleh Andi Ernawati tahun 2022 membahas mengenai penentuan penerima beasiswa untuk mahasiswa berprestasi dengan penerapan algoritma Entropy dan ARAS. Penelitian ini menetapkan 4 kriteria serta terdapat 10 alternatif yang diteliti sehingga menghasilkan alternatif terbaik yang berhak menerima beasiswa sebanyak 7 mahasiswa dan 3 mahasiswa tidak berhak menerima beasiswa[7]. Penelitian yang dilakukan oleh Abdul Karim tahun 2022 membahas mengenai penentuan desa terbaik dengan pengimplementasian algoritma Entropy dan ARAS. Penelitian ini menetapkan 4 kriteria serta terdapat 10 alternatif yang diteliti sehingga menghasilkan alternatif terbaik dengan memperoleh nilai sangat baik yaitu 7 desa sedangkan 3 desa lainnya mendapatkan nilai baik[8]. Penelitian yang dilakukan oleh Tasya dan Lili tahun 2023 membahas mengenai penyeleksian admin gudang dengan penerapan metode WASPAS dan SMART. Penelitian ini menetapkan 5 kriteria serta terdapat 8 alternatif sehingga menghasilkan alternatif terbaik dengan nilai 0.9 atas nama Ivan Satrya[9]. Penelitian yang dilakukan oleh Badrul Anwar dkk tahun 2023 meneliti tentang analisis dalam pemilihan pimpinan perusahaan dengan metode WASPAS. Penelitian ini menetapkan 4 kriteria serta terdapat 6 alternatif sehingga menghasilkan alternatif terbaik dengan nilai 2.3732 atas nama Pranoto[10].

Berdasarkan penjelasan yang telah disampaikan, peneliti tertarik untuk melakukan studi mengenai pemilihan laptop desain grafis terbaik dengan menggunakan metode ENTROPY dan WASPAS. Tujuan dari penelitian ini adalah untuk menentukan bobot dari setiap kriteria dan menemukan alternatif terbaik dalam proses perankingan laptop desain grafis. Dengan hasil yang akurat dari penelitian ini, diharapkan dapat memberikan rekomendasi bagi orang yang memerlukan dalam memilih laptop yang tepat untuk belajar desain grafis.

2. METODOLOGI PENELITIAN

2.1 Laptop Desain Grafis

Laptop desain grafis merupakan laptop yang diperuntukkan bagi para profesional dalam bidang desain grafis. Laptop jenis ini memiliki kemampuan dan spesifikasi hardware yang lebih baik dibandingkan dengan laptop biasa. Beberapa spesifikasi yang lebih tinggi pada laptop desain grafis antara lain prosesor yang lebih cepat, kartu grafis yang lebih kuat, serta RAM yang lebih besar. Selain itu, layar pada laptop desain grafis memiliki resolusi yang lebih tinggi dan kemampuan warna yang lebih akurat. Fungsi dari resolusi dan kemampuan warna tersebut adalah untuk memastikan keakuratan dan kejelasan tampilan visual[11].

2.2 Metode ENTROPY

Metode Entropy adalah suatu teknik yang berguna dalam proses pembobotan kriteria yang telah ditetapkan, dengan tujuan untuk menghasilkan bobot yang diperlukan. Ada beberapa tahapan yang harus dilakukan dalam menggunakan metode Entropy untuk memperoleh nilai bobot yang diinginkan, yaitu sebagai berikut[10]-[14]:

- a. Menetapkan data awal
- b. Menormalisasikan data awal

Normalisasi setiap nilai kriteria dengan nilai maximum, sehingga hasil dari normalisasi tersebut dinyatakan sebagai

c. Mencari nilai matriks
$$(a_{ij})$$

$$a_{ij} = \frac{\kappa_{ij}}{\sum_{i=1}^{n} \sum_{i=1}^{n} \kappa_{ij}}$$
d. Menghitung nilai Entropy setiap kriteria
$$E_{j} = \left[\frac{-1}{\ln m}\right] \sum_{i=1}^{n} \left[a_{ij} \ln(a_{ij})\right]$$
e. Menghitung dispersi setiap kriteria
$$C_{j} = \frac{1}{n} \sum_{i=1}^{n} \left[a_{ij} \ln(a_{ij})\right]$$
(2)

$$E_j = \left[\frac{-1}{\ln m}\right] \sum_{i=1}^n \left[a_{ij} \ln(a_{ij})\right] \tag{2}$$

(3)

 $D_j = 1 - E_j$

f. Normalisasi nilai dispersi
$$W_{j} = \frac{D_{j}}{\sum D_{j}}$$
 (4)

2.3 Metode WASPAS

Metode WASPAS digunakan untuk meminimalkan kesalahan dalam pencarian nilai tertinggi dan terendah dalam rangka mendapatkan hasil yang akurat. Dalam proses ini, metode WASPAS akan mencari alternatif terbaik yang sesuai dengan nilai bobot yang telah ditentukan. Metode WASPAS mencari kombinasi optimal dari kriteria berdasarkan dua kriteria optimal. Metode ini digunakan sebagai sistem pendukung keputusan dalam menentukan prioritas dengan menggunakan pembobotan. Berikut adalah tahapan perhitungan dalam menggunakan metode WASPAS[17]-[20]:

a. Membuat matrix keputusan

$$X_{ij} = \begin{bmatrix} X_{11} & X_{12} & \cdots & X_{1n} \\ X_{21} & X_{22} & \cdots & X_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ X_{m1} & X_{m2} & \cdots & X_{mn} \end{bmatrix}$$
 (5)

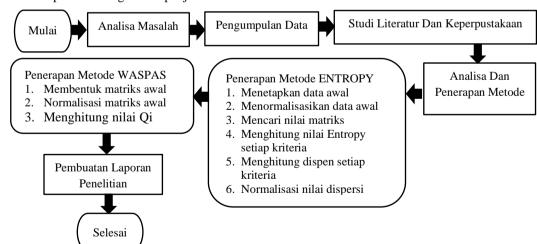
b. Melakukan normalisasi

Kriteria Benefit

$$R_{ij} = \frac{x_{ij}}{\max x_{ij}} \tag{6}$$

Kriteria Cost

$$R_{ij} = \frac{\min x_{ij}}{x_{ij}} \tag{7}$$


c. Menghitung nilai Qi

$$Qi = 0.5 \sum_{j=1}^{n} r_{ij} wj + 0.5 \coprod_{j=1}^{n} (r_{ij})^{wj}$$
(8)

2.4 Tahapan Penelitian

Dalam pelaksanaan penelitian ini, dilakukan beberapa tahapan sebagai berikut:

- a. Analisis Masalah
 - Tahap analisis masalah dilakukan untuk memperoleh strategi yang tepat dalam menyelesaikan masalah yang terkait dengan penelitian.
- b. Pengumpulan Data
 - Tahap pengumpulan data dilakukan untuk memperoleh referensi yang dapat digunakan dalam penelitian.
- c. Studi Literatur
 - Tahap studi literatur dilakukan untuk memahami objek yang diteliti serta mencari referensi yang dapat mempermudah proses penelitian.
- d. Analisis Penerapan Metode
 - Tahap analisis penerapan metode dalam penelitian ini dimulai dengan menentukan nilai bobot menggunakan metode ENTROPY dan melakukan perangkingan alternatif menggunakan metode WASPAS.
- e. Laporan Penelitian
 - Tahap terakhir adalah penyusunan laporan penelitian yang berisi hasil dari penelitian yang telah dilakukan. Berikut merupakan kerangka dari penjelasan diatas:

Gambar 1. Kerangka Penelitian

3. HASIL DAN PEMBAHASAN

3.1 Alternatif

Pengguna yang ingin belajar di bidang desain grafis dapat memanfaatkan proses pemilihan rekomendasi laptop desain grafis terbaik. Agar hasil yang didapatkan akurat dan dapat diandalkan, penulis menggunakan metode WASPAS untuk mencari alternatif terbaik dan metode ENTROPY untuk mencari nilai bobot. Data yang dibutuhkan untuk proses ini adalah data laptop sebanyak 7 alternatif, seperti terlihat pada Tabel 1.

Tabel 1. Data Alternatif Ponsel

Alternatif	Laptop Desain Grafis
LDG1	ACER NITRO 5
LDG2	ACER PREDATOR HELIOS 300
LDG3	ASUS ROG FLOW X13 R9
LDG4	RAZER BLADE 15 ADVANCED
LDG5	RAZER BLADE PRO 17
LDG6	LENOVO LEGION 5 PRO R7
LDG7	LENOVO LEGION 5 R5

3.2 Kriteria dan Bobot

Untuk menentukan rekomendasi laptop desain grafis terbaik, dibutuhkan data pendukung seperti data alternatif, kriteria, dan bobot. Penelitian ini menggunakan 7 kriteria yang tercantum pada Tabel 2.

Tabel 2. Data Kriteria

Kriteria	Keterangan	Jenis
C 1	Processor	Benefit
C2	RAM	Benefit
C3	Hardisk	Benefit
C4	Jenis VGA	Benefit
C5	Kapasitas VGA	Benefit
C6	Berat	Cost
C7	Harga	Cost

Tabel 3. Data Alternatif Laptop Desain Grafis

Alternatif	C1	C2	C3	C4	C5	C6	C7
ACER NITRO 5	Intel Core i9- 11900H	16	512	Nvidia GeForce RTX	6	2.20	10600000
ACER NITRO 3	Intel Core 19- 11900H	GB	MB	3060	GB	Kg	19600000
ACER PREDATOR	Intel Core i9- 11900H	16	512	Nvidia GeForce RTX	8	2.50	38000000
HELIOS 300	Intel Core 19- 11900H	GB	MB	3070	GB	Kg	38000000
ASUS ROG FLOW X13	AMD Ryzen 9 5900HS	16	512	Nvidia GeForce RTX	4	1.30	19900000
R9	AMD Ryzell 9 3900HS	GB	MB	3050	GB	Kg	19900000
RAZER BLADE 15	Intel Core i9-12900H	32	1000	Nvidia GeForce RTX	16	2.01	60000000
ADVANCED	Iller Core 19-12900H	GB	MB	3080Ti	GB	Kg	00000000
RAZER BLADE PRO	Intel Core i9-12900H	32	1000	Nvidia GeForce RTX	16	2.71	65000000
17	Iller Core 19-12900H	GB	MB	3080Ti	GB	Kg	0300000
LENOVO LEGION 5	AMD Dagger 7 5900H	16	1000	Nvidia GeForce RTX	6	2.45	27800000
PRO R7	AMD Ryzen 7 5800H	GB	MB	3060	GB	Kg	27800000
LENOVO LEGION 5 R5	AMD Dygon 5 5600H	16	1000	Nvidia GeForce RTX	4	2.40	17000000
LENOVO LEGION 3 K3	AMD Ryzen 5 5600H	GB	MB	3050	GB	Kg	17000000

Pada kriteria C1 dan C4 diperlukan tabel pembobotan untuk memperoleh data rating kecocokan dapat dilihat seperti berikut :

Tabel 4. Pembobotan C1

Keterangan	Nilai
Intel Core i9-12900H	10
Intel Core i9-11900H	8
AMD Ryzen 9 5900HS	6
AMD Ryzen 7 5800H	4
AMD Ryzen 5 5600H	2

Tabel 5. Pembobotan C1

Keterangan	Nilai
Nvidia GeForce RTX 3080Ti	8
Nvidia GeForce RTX 3070	6
Nvidia GeForce RTX 3060	4
Nvidia GeForce RTX 3050	2

Data rating kecocokan dapat dihasilkan dari tabel pembobotan kriteria, dan ditampilkan pada Tabel 6 berikut.

				6			
Alternatif	C1	C2	C3	C4	C5	C6	C7
LDG1	8	16	512	4	6	2.20	19600000
LDG2	8	16	512	6	8	2.50	38000000
LDG3	6	16	512	2	4	1.30	19900000
LDG4	10	32	1000	8	16	2.01	60000000
LDG5	10	32	1000	8	16	2.71	65000000
LDG6	4	16	1000	4	6	2.45	27800000
LDG7	2	16	1000	2	4	2.40	17000000
Max	10	32	1000	8	16	2.71	65000000
Min	2	16	512	2	4	1.30	17000000

Tabel 6. Data Rating Kecocokan

3.3 Penerapan Metode ENTROPY

a. Menetapkan Data Awal

$$X = \begin{bmatrix} X_{ij} \end{bmatrix} = \begin{bmatrix} 8 & 16 & 512 & 4 & 6 & 2.20 & 19600000 \\ 8 & 16 & 512 & 6 & 8 & 2.50 & 38000000 \\ 6 & 16 & 512 & 2 & 4 & 1.30 & 19900000 \\ 10 & 32 & 1000 & 8 & 16 & 2.01 & 60000000 \\ 10 & 32 & 1000 & 8 & 16 & 2.71 & 65000000 \\ 4 & 16 & 1000 & 4 & 6 & 2.45 & 27800000 \\ 2 & 16 & 1000 & 2 & 4 & 2.40 & 170000000 \end{bmatrix}$$

b. Menormalisasikan Data Awal

Menormalisasikan Dat
C1

$$K_{11} = \frac{8}{10} = 0.80000$$

 $K_{21} = \frac{8}{10} = 0.80000$
 $K_{31} = \frac{6}{10} = 0.60000$
 $K_{41} = \frac{10}{10} = 1.00000$
 $K_{51} = \frac{10}{10} = 1.00000$
 $K_{61} = \frac{4}{10} = 0.40000$
 $K_{71} = \frac{2}{10} = 0.20000$

Proses untuk memperoleh data normalisasi data awal pada kriteria C2 hingga C7 dapat dilakukan dengan cara perhitungan yang sama, sehingga diperoleh data normalisasi pada tabel 7.

Tabel 7. Data Normalisasi

Alternatif	C1	C2	C3	C4	C5	C6	C7
LDG1	0.80000	0.50000	0.51200	0.50000	0.37500	0.81181	0.30154
LDG2	0.80000	0.50000	0.51200	0.75000	0.50000	0.92251	0.58462
LDG3	0.60000	0.50000	0.51200	0.25000	0.25000	0.47970	0.30615
LDG4	1.00000	1.00000	1.00000	1.00000	1.00000	0.74170	0.92308
LDG5	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
LDG6	0.40000	0.50000	1.00000	0.50000	0.37500	0.90406	0.42769
LDG7	0.20000	0.50000	1.00000	0.25000	0.25000	0.88561	0.26154
Sum	4.80000	4.50000	5.53600	4.25000	3.75000	5.74539	3.80462

c. Menentukan nilai matriks (αij)

$$\begin{array}{l} \text{C1} \\ \text{a}_{11} = \frac{0.80000}{4.80000} = 0.16667 \\ \text{a}_{21} = \frac{0.80000}{4.80000} = 0.16667 \\ \text{a}_{31} = \frac{0.60000}{4.80000} = 0.12500 \\ \text{a}_{41} = \frac{1.00000}{4.80000} = 0.20833 \\ \text{a}_{51} = \frac{1.00000}{4.80000} = 0.20833 \\ \text{a}_{61} = \frac{0.40000}{4.80000} = 0.08333 \end{array}$$

$$a_{71} = \frac{0.20000}{4.80000} = 0.04167$$

Proses untuk memperoleh data nilai matriks αij pada kriteria C2 hingga C7 dapat dilakukan dengan cara perhitungan yang sama, sehingga diperoleh data nilai matriks α*ij* pada tabel 7.

Tabel 8. Data Nilai Matriks αij

Alternatif	C1	C2	C3	C4	C5
LDG1	0.16667	0.11111	0.09249	0.11765	0.10000
LDG2	0.16667	0.11111	0.09249	0.17647	0.13333
LDG3	0.12500	0.11111	0.09249	0.05882	0.06667
LDG4	0.20833	0.22222	0.18064	0.23529	0.26667
LDG5	0.20833	0.22222	0.18064	0.23529	0.26667
LDG6	0.08333	0.11111	0.18064	0.11765	0.10000
LDG7	0.04167	0.11111	0.18064	0.05882	0.06667

d. Perhitungan nilai Entropy untuk setiap kriteria (E_i)

C1

$$a_{11} = [a_{11} \ln a_{11}]$$

= [0.16667(\ln 0.16667)]
= -0.29863

$$a_{21} = [0.16667 (\ln 0.16667)]$$

$$= -0.29863$$

$$a_{31} = [0.12500 (ln 0.12500)]$$

$$= -0.25993$$

$$a_{11} = [0.20833] (ln 0.20833)$$

$$a_{41} = [0.20833 (ln 0.20833)]$$

= -0.32679

$$a_{51} = [0.20833 (ln 0.20833)]$$

= -0.32679

$$a_{61} = [0.08333 (ln 0.08333)]$$

= -0.20708

$$a_{71} = [0.04167 (\ln 0.04167)]$$

= -0.13242

$$\sum_{i=1}^{n} \left[a_{ij} \ln(a_{ij}) \right] = -1.85027$$

$$E_1 = \frac{-1}{\ln(7)}(-1.85027) = 0.95085$$

Untuk mendapatkan E_2 sampai E_7 dapat dihitung dengan cara yang sama seperti E_1 . Maka diperoleh yaitu:

$$E_2 = 0.97084$$

$$E_3 = 0.97487$$

$$E_4 = 0.93729$$

$$E_5 = 0.92254$$

$$E_6 = 0.98941$$

$$E_7 = 0.93327$$

b. Menghitung dispersi untuk setiap kriteria

$$D_1 = 1 - 0.95085 = 0.04915$$

$$D_2 = 1 - 0.97084 = 0.02916$$

$$D_3 = 1 - 0.97487 = 0.02513$$

$$D_4 = 1 - 0.93729 = 0.06271$$

$$D_5 = 1 - 0.92254 = 0.07746$$

$$D_6 = 1 - 0.98941 = 0.01059$$

$$D_7 = 1 - 0.93327 = 0.06673$$

$$\sum D_i = (0.04915 + 0.02916 + 0.02513 + 0.06271 + 0.07746 + 0.01059 + 0.06673) = 0.32093$$

c. Normalisasi nilai dispersi

$$W_1 = \frac{0.04915}{0.32093} = 0.367$$

$$W_2 = \frac{0.02916}{0.32093} = 0.315$$

$$W_2 = \frac{0.02916}{0.32093} = 0.315$$

$$W_2 = \frac{0.32093}{0.32093} = 0.315$$

$$W_3 = \frac{0.02513}{0.32093} = 0.119$$

$$\begin{split} W_4 &= \frac{0.06271}{0.32093} = 0.046 \\ W_5 &= \frac{0.07746}{0.32093} = 0.152 \\ W_6 &= \frac{0.01059}{0.32093} = 0.152 \\ W_7 &= \frac{0.06673}{0.32093} = 0.152 \end{split}$$

Hasil yang diperoleh dari perhitungan Entropy yaitu nilai bobot untuk setiap kriteria dapat dilihat pada Tabel 8.

Kriteria	Keterangan	Bobot	Jenis
C1	Processor	0.15315	Benefit
C2	RAM	0.09087	Benefit
C3	Hardisk	0.07830	Benefit
C4	Jenis VGA	0.19541	Benefit
C5	Kapasitas VGA	0.24136	Benefit
C6	Berat	0.03298	Cost
C7	Harga	0.20792	Cost

Tabel 9. Data Nilai Bobot Kriteria

3.4 Penerapan Metode WASPAS

Penerapan metode WASPAS digunakan dengan tujuan memperoleh perangkingan, langkah perhitungan metode WASPAS sebagai berikut :

a. Matriks keputusan awal

$$X = \begin{bmatrix} X_{ij} \end{bmatrix} = \begin{bmatrix} 8 & 16 & 512 & 4 & 6 & 2.20 & 19600000 \\ 8 & 16 & 512 & 6 & 8 & 2.50 & 38000000 \\ 6 & 16 & 512 & 2 & 4 & 1.30 & 19900000 \\ 10 & 32 & 1000 & 8 & 16 & 2.01 & 60000000 \\ 10 & 32 & 1000 & 8 & 16 & 2.71 & 65000000 \\ 4 & 16 & 1000 & 4 & 6 & 2.45 & 27800000 \\ 2 & 16 & 1000 & 2 & 4 & 2.40 & 170000000 \end{bmatrix}$$

b. Melakukan normalisasi terhadap matrik X_{ij}

Kriteria Benefit yaitu C1, C2, C3, C4 dan C5 dengan rumus persamaan 6.

C1
$$R_{11} = \frac{8}{10} = 0.80000$$

$$R_{21} = \frac{8}{10} = 0.80000$$

$$R_{31} = \frac{6}{10} = 0.60000$$

$$R_{41} = \frac{10}{10} = 1.00000$$

$$R_{51} = \frac{10}{10} = 1.00000$$

$$R_{61} = \frac{4}{10} = 0.40000$$

$$R_{71} = \frac{2}{10} = 0.20000$$

Lanjutkan perhitungan untuk memperoleh normalisasi matriks C2 hingga C5 dengan rumus persamaan 6 seperti dalam memperoleh normalisasi matriks C1. Kemudian lakukan perhitungan untuk kriteria cost.

Kriteria Cost yaitu C6 dan C7 dengan rumus persamaan 7.

C6
$$R_{16} = \frac{1.30}{2.20} = 0.59091$$

$$R_{26} = \frac{1.30}{2.50} = 0.59091$$

$$R_{36} = \frac{1.30}{1.30} = 0.59091$$

$$R_{46} = \frac{1.30}{2.01} = 0.59091$$

$$R_{56} = \frac{1.30}{2.71} = 0.59091$$

$$R_{66} = \frac{1.30}{2.45} = 0.59091$$

$$R_{76} = \frac{1.30}{2.40} = 0.59091$$

Lanjutkan perhitungan untuk memperoleh normalisasi matriks C7 dengan rumus persamaan 7 seperti dalam memperoleh normalisasi matriks C6. Maka setelah melakukan normalisasi matriks kriteria benefit dan cost maka diperoleh tabel data nilai matrik ternormalisasi pada tabel 10.

Tabel 10. Data Nilai Matrik Ternormalisasi

Alternatif	C1	C2	C3	C4	C5	C6	C7
LDG1	0.80000	0.50000	0.51200	0.50000	0.37500	0.59091	0.86735
LDG2	0.80000	0.50000	0.51200	0.75000	0.50000	0.52000	0.44737
LDG3	0.60000	0.50000	0.51200	0.25000	0.25000	1.00000	0.85427
LDG4	1.00000	1.00000	1.00000	1.00000	1.00000	0.64677	0.28333
LDG5	1.00000	1.00000	1.00000	1.00000	1.00000	0.47970	0.26154
LDG6	0.40000	0.50000	1.00000	0.50000	0.37500	0.53061	0.61151
LDG7	0.20000	0.50000	1.00000	0.25000	0.25000	0.54167	1.00000

```
c. Mengoptimalkan atribut dengan mengalikan terhadap bobot
```

```
Q_1 = \left(0.5\sum((0.80000*0.15315) + (0.50000*0.09087) + (0.51200*0.07830) + (0.50000*0.19541) + (0.37500*0.24136) + (0.59091*0.03298) + (0.86735*0.20792))\right) + \left(0.5\sum((0.80000^{0.15315}) + (0.50000^{0.09087}) + (0.51200^{0.07830}) + (0.50000^{0.19541}) + (0.37500^{0.24136}) + (0.59091^{0.03298}) + (0.86735^{0.20792}))\right)
```

- = 0.29805 + 3.23523
- = 3.53328
- $Q_2 = \left(0.5 \sum \left((0.80000 * 0.15315) + (0.50000 * 0.09087) + (0.51200 * 0.07830) + (0.75000 * 0.19541) + (0.50000 * 0.24136) + (0.52000 * 0.03298) + (0.44737 * 0.20792)\right)\right) + \left(0.5 \sum \left((0.80000^{0.15315}) + (0.50000^{0.09087}) + (0.51200^{0.07830}) + (0.75000^{0.19541}) + (0.50000^{0.24136}) + (0.52000^{0.03298}) + (0.44737^{0.20792})\right) \right)$
 - = 0.29273 + 3.23511
 - = 3.53328
- $\begin{aligned} Q_3 &= \left(0.5 \sum \left((0.60000*0.15315) + (0.50000*0.09087) + (0.51200*0.07830) + (0.25000*0.19541) + \\ &\quad \left(0.25000*0.24136\right) + (1.00000*0.03298) + (0.85427*0.20792)\right)\right) + \left(0.5 \sum \left((0.60000^{0.15315}) + (0.50000^{0.09087}) + (0.51200^{0.07830}) + (0.25000^{0.19541}) + (0.25000^{0.24136}) + (1.00000^{0.03298}) + \\ &\quad \left(0.85427^{0.20792}\right)\right)\right) \end{aligned}$
 - = 0.24861 + 3.12937
 - = 3.37798
- $\begin{aligned} Q_4 &= \left(0.5 \sum \left((1.00000*0.15315) + (1.00000*0.09087) + (1.00000*0.07830) + (1.00000*0.19541) + \\ &\quad \left(1.00000*0.24136\right) + (0.64677*0.03298) + (0.28333*0.20792)\right)\right) + \left(0.5 \sum \left((1.00000^{0.15315}) + (1.00000^{0.09087}) + (1.00000^{0.07830}) + (1.00000^{0.19541}) + (1.00000^{0.24136}) + (0.64677^{0.03298}) + \\ &\quad \left(0.28333^{0.20792}\right)\right)\right) \end{aligned}$
 - = 0.41967 + 3.37754
 - = 3.79720
- $\begin{aligned} Q_5 &= \left(0.5 \sum \left((1.00000*0.15315) + (1.00000*0.09087) + (1.00000*0.07830) + (1.00000*0.19541) + \\ &\quad (1.00000*0.24136) + (0.47970*0.03298) + (0.26154*0.20792)\right)\right) + \left(0.5 \sum \left((1.00000^{0.15315}) + (1.00000^{0.09087}) + (1.00000^{0.07830}) + (1.00000^{0.19541}) + (1.00000^{0.24136}) + (0.47970^{0.03298}) + \\ &\quad (0.26154^{0.20792})\right)\right) \end{aligned}$
 - = 0.41465 + 3.36635
 - = 3.78100
- $\begin{aligned} Q_6 &= \left(0.5 \sum \left((0.40000*0.15315) + (0.50000*0.09087) + (1.00000*0.07830) + (0.50000*0.19541) + \\ &\quad \left(0.37500*0.24136\right) + (0.53061*0.03298) + (0.61151*0.20792)\right)\right) + \left(0.5 \sum \left((0.40000^{0.15315}) + (0.50000^{0.09087}) + (1.00000^{0.07830}) + (0.50000^{0.19541}) + (0.37500^{0.24136}) + (0.53061^{0.03298}) + \\ &\quad \left(0.61151^{0.20792}\right)\right)\right) \end{aligned}$
 - = 0.25893 + 3.17633
 - = 3.43526
- $Q_7 = \left(0.5 \sum \left((0.20000 * 0.15315) + (0.50000 * 0.09087) + (1.00000 * 0.07830) + (0.25000 * 0.19541) + (0.25000 * 0.24136) + (0.54167 * 0.03298) + (1.00000 * 0.20792)\right)\right) + \left(0.5 \sum \left((0.20000^{0.15315}) + (0.50000^{0.09087}) + (1.00000^{0.07830}) + (0.25000^{0.19541}) + (0.25000^{0.24136}) + (1.00000^{0.03298}) + (1.00000^{0.20792})\right)\right)$
 - = 0.24468 + 3.08940
 - = 3.33408

Berdasarkan perhitungan tersebut maka diperoleh data perangkingan terhadapt 7 alternatif Laptop desaian grafis sebagai berikut:

Tabel 11. Data Perangkingan

Alternatif	Laptop Desain Grafis	Nilai	Rank
LDG1	ACER NITRO 5	3.53328	3
LDG2	ACER PREDATOR HELIOS 300	3.52784	4
LDG3	ASUS ROG FLOW X13 R9	3.37798	6
LDG4	RAZER BLADE 15 ADVANCED	3.79720	1
LDG5	RAZER BLADE PRO 17	3.78100	2
LDG6	LENOVO LEGION 5 PRO R7	3.43526	5
LDG7	LENOVO LEGION 5 R5	3.33408	7

Hasil penelitian dengan penerapan metode ENTROPY dan WASPAS menunjukkan bahwa alternatif terbaik sebagai rekomendasi laptop desain grafis terdapat pada tabel 11, yaitu RAZER BLADE 15 ADVANCED pada alternatif A4 dengan nilai tertinggi sebesar 3.79720, yang menempati peringkat pertama.

4. KESIMPULAN

Berdasarkan hasil penelitian, dapat disimpulkan bahwa metode ENTROPY dan WASPAS dapat digunakan untuk memperoleh nilai bobot dan peringkat alternatif terbaik dari kriteria seperti Processor, RAM, Hardisk, Jenis VGA, Kapasitas VGA, Berat dan Harga, sehingga dapat memberikan rekomendasi pemilihan laptop terbaik untuk desain grafis seperti yang tercantum pada tabel 11. Alternatif terbaik yang direkomendasikan adalah RAZER BLADE 15 ADVANCED yang berada pada alternatif A4 dengan nilai tertinggi sebesar 3.79720, sebagai peringkat pertama. Rekomendasi ini diharapkan dapat membantu pengguna yang ingin memilih laptop yang tepat untuk belajar di bidang desain grafis.

REFERENCES

- [1] A. Utami and A. Saehan, "Penerapan Algoritma Turbo Boyer Moore Pada Aplikasi Perbandingan Harga Laptop Menggunakan Web," *Bul. Ilm. Inform. Teknol.*, vol. 1, no. 2, pp. 37–42, 2023.
- [2] S. Wijayanto and M. Fauzi, "Perancangan Aplikasi Berbasis Web dalam Merekomendasikan Laptop dengan Metode Simple Additive Weighting," *J. Ilmu Komput.*, vol. 6, no. 1, pp. 15–19, 2023.
- [3] D. I. H. Damanik and B. Triandi, "Studi Perbandingan Metode Prefrence Selection Index (PSI) Dengan Simple Additive Weighting (SAW) Dalam Pemilihan Laptop," *Inf. Syst. Data Sci.*, vol. 2, no. 1, pp. 60–69, 2023.
- [4] A. A. Kusumadinata, N. Amalia, N. Biralda, and H. Hanafi, "RekognisiMelalui Webinar Branding Desain GrafisDi Era 4.0," *J. Pengabdi. Pasca Unisti*, vol. 1, no. 1, pp. 45–60, 2023.
- [5] A. Karim, S. Esabella, T. Andriani, and M. Hidayatullah, "Penerapan Metode Multi-Objective Optimization on the Basis of Simple Ratio Analysis (MOOSRA) dalam Penentuan Lulusan Mahasiswa Terbaik," *Build. Informatics, Technol. Sci.*, vol. 4, no. 1, pp. 162–168, 2022, doi: 10.47065/bits.v4i1.1630.
- [6] P. Simanjuntak and R. D. Sianturi, "Sistem Pendukung Keputusan Seleksi Penerima Dokter Dirumah Sakit Umum Bhakti Dengan Menerapkan Metode Oreste Dan ROC," vol. 2, no. 3, pp. 121–127, 2022.
- [7] A. Ernawati, "Penerapan Algoritma Entropy Dan Aras Menentukan Penerima Beasiswa Mahasiswa Berprestasi Di Pemerintah Kabupaten Labuhanbatu," vol. 3, no. 2, pp. 74–84, 2022.
- [8] A. Karim, "Penerapan Algoritma Entropy dan Aras Menentukan Desa Terbaik Di Pemerintah Kabupaten Labuhanbatu," *Kaji. Ilm. Inform. dan Komput.*, vol. 3, no. 1, pp. 41–51, 2022.
- [9] T. Ardilah and L. Tanti, "Metode Waspas dan SMART Dalam Seleksi Admin Gudang Berbasis Web," *J. InSeDS (Inf. Syst. Data Sci.)*, vol. 1, no. 2, 2023.
- [10] B. Anwar, M. Giatman, H. Maksum, and A. H. Nasyuha, "Analisis Metode WASPAS Dalam Pemilihan Pimpinan Perusahaan," J. MEDIA Inform. BUDIDARMA, vol. 7, no. 1, pp. 138–144, 2023, doi: 10.30865/mib.v7i1.5170.
- [11] I. Zahari, W. Mahmud, D. A. Wibowo, A. D. Andriani, and S. Farhani, "Pelatihan Desain Grafis untuk Meningkatkan Keterampilan Digital bagi Anggota IPNU/IPPNU Desa Ngadiluwih Kediri," *Sejah. J. Inspirasi Mengabdi Untuk Negeri*, vol. 2, no. 1, pp. 95–103, 2023.
- [12] M. Hamzah, D. Suhaedi, and Y. Ramdani, "Implementasi Metode SAW dan Entropy pada Pemilihan Armada Travel," in *Bandung Conference Series: Mathematics*, 2023, vol. 3, no. 1.
- [13] A. M. A. Y. D. W. I. ARMANDA, "Penerapan Entropy Weight Method dan Metode TOPSIS dalam Menentukan Pilihan Produk." UNDIP, 2023.
- [14] P. S. Informatika and U. I. Kebangsaan, "KOMBINASI METODE ENTROPY DAN SIMPLE ADDITIVE WEIGHTING (SAW) DALAM PENENTUAN," vol. 7, no. 2, pp. 129–138, 2022.
- [15] Z. Zaidir, "Pemodelan Sistem Pendukung Keputusan Penentuan Prioritas Kenaikan Biaya Kuliah Pada Program Studi Menggunakan Metode Entropy-Electre III dan Analisis Trend Kuadrat Terkecil," *Respati*, vol. 12, no. 3, pp. 1–14, 2017, doi: 10.35842/jtir.v12i3.186.
- [16] S. Sampathkumar, F. Augustin, M. K. A. Kaabar, and X.-G. Yue, "An integrated intuitionistic dense fuzzy Entropy-COPRAS-WASPAS approach for manufacturing robot selection," *Adv. Mech. Eng.*, vol. 15, no. 3, p. 16878132231160264, 2023.
- [17] F. Mahdi, Faisal, D. P. Indini, and Mesran, "Penerapan Metode WASPAS dan ROC (Rank Order Centroid) dalam Pengangkatan Karyawan Kontrak," vol. 3, no. 2, pp. 197–202, 2023, doi: 10.47065/bulletincsr.v3i2.232.
- [18] A. Özbek and M. A. Özbek, "EDAS ve WASPAS yöntemleriyle tıbbi malzeme tedarikçisi belirleme," Niğde Ömer Halisdemir

- Üniversitesi Mühendislik Bilim. Derg., vol. 12, no. 1, pp. 144–158.
- [19] T. Saputra and W. Verina, "Sistem Pendukung Keputusan untuk Menentukan Produk Terlaris Pada Samudra Jaya Printing Menggunakan Metode WASPAS," *INFOSYS (INFORMATION Syst. J.*, vol. 7, no. 2, pp. 190–201, 2023.
- [20] N. Handayani, N. Heriyani, F. Septian, and A. D. Alexander, "MULTI-CRITERIA DECISION MAKING USING THE WASPAS METHOD FOR ONLINE ENGLISH COURSE SELECTION," *J. Teknoinfo*, vol. 17, no. 1, pp. 260–270, 2023.