Analisis Clustering Donor Darah dengan Metode Agglomerative Hierarchical Clustering
DOI:
https://doi.org/10.30865/resolusi.v3i6.977Keywords:
Clusteing; SEMMA; Agglomerative Hierarchical Clustering; Shilhouette CoefficientAbstract
Blood is a fluid that has the function of supplying nutrients, transporting metabolic products, sending oxygen and as natural antibodies to fight viruses or bacteria in the body. The Blood Donor Unit (UDD) of PMI (Indonesian Red Cross) is one of the agencies responsible for ensuring the availability of blood. To meet this availability, this agency carries out various programs, in an effort to ensure that the availability of blood is maintained. But in reality, there is a gap between supply and demand, where the need for blood is higher than the supply of blood. The problem of relatively high demand and a minimum number of blood donors can be used as a research topic, with the aim of producing information about the number of donors, blood types and availability, and temporary donor sites in each sub-district in Purwakarta district. This research will use the Agglomerative Hierarchical Clustering (AHC) algorithm, with the methodology used, namely SEMMA, the stages are: sample, explore, mpodify, model, and assess. The attributes used are id, district, blood group, latitude and longitude. From these attributes, clustering is made using the Agglomerative Hierarchical Clustering (AHC) algorithm using Orange, and visualized using Power BI. The research results from this data cluster get 3 clusters, the most donors are in Purwakarta District and followed by Bungursari District. Then the evaluation was assessed using the Silhouette Coefient which resulted in an accuracy rate of 0.713346292
Downloads
References
R. Ordila, R. Wahyuni, Y. Irawan, and M. Yulia Sari, “PENERAPAN DATA MINING UNTUK PENGELOMPOKAN DATA REKAM MEDIS PASIEN BERDASARKAN JENIS PENYAKIT DENGAN ALGORITMA CLUSTERING (Studi Kasus?: Poli Klinik PT.Inecda),” J. Ilmu Komput., vol. 9, no. 2, pp. 148–153, 2020, doi: 10.33060/jik/2020/vol9.iss2.181.
R. A. Farissa, R. Mayasari, and Y. Umaidah, “Perbandingan Algoritma K-Means dan K-Medoids Untuk Pengelompokkan Data Obat dengan Silhouette Coefficient di Puskesmas Karangsambung,” J. Appl. Informatics Comput., vol. 5, no. 2, pp. 109–116, 2021, doi: 10.30871/jaic.v5i1.3237.
T. D. Andini and L. Farokhah, “Peningkatan Ketersediaan Darah Sesuai Segmentasi Umur Menggunakan K-Means Clustering,” J. Manaj. Inform., vol. 12, no. 2, pp. 126–136, 2022, doi: 10.34010/jamika.v12i2.7897.
R. M. Natsir, “Penyuluhan Tentang Pentingnya Pemeriksaan Golongan Darah Dengan Media Booklet Di Sd Negeri 1 Passo,” SELAPARANG J. Pengabdi. Masy. Berkemajuan, vol. 6, no. 1, p. 341, 2022, doi: 10.31764/jpmb.v6i1.7812.
J. L. Bruse et al., “Detecting Clinically Meaningful Shape Clusters in Medical Image Data: Metrics Analysis for Hierarchical Clustering Applied to Healthy and Pathological Aortic Arches,” IEEE Trans. Biomed. Eng., vol. 64, no. 10, pp. 2373–2383, 2017, doi: 10.1109/TBME.2017.2655364.
P. R. Harnanda, N. Damastuti, and T. M. Fahrudin, “GIS implementation and classterization of potential blood donors using the agglomerative hierarchical clustering method,” IJEEIT Int. J. Electr. Eng. Inf. Technol., vol. 3, no. 2, pp. 44–54, 2021, doi: 10.29138/ijeeit.v3i2.1305.
Z. Arifin, S. Stefanus, and A. M. Soeleman, “Klasterisasi Genre Cerpen Kompas Menggunakan Agglomerative Hierarchical Clustering- Single Linkage,” J. Teknol. Inf. Cyberku, vol. 13, no. 2, pp. 92–100, 2017, [Online]. Available: https://repository.dinus.ac.id/docs/bkd/Artikel_Klasterisasi_Genre_Cerpen_Kompas_Menggunakan_Aglo.pdf
K. P. Simanjuntak and U. Khaira, “Pengelompokkan Titik Api di Provinsi Jambi dengan Algoritma Agglomerative Hierarchical Clustering,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 1, no. 1, pp. 7–16, 2021, doi: 10.57152/malcom.v1i1.6.
Sumber Palang Merah Indonesia
Kusumastuti, R., Bayunanda, E., Muhammad Rifa, A., Ryandy Ghonim Asgar, M., & Inti Ilmawati, F. (n.d.). Clustering Titik Panas Menggunakan Algoritma Agglomerative Hierarchical Clustering (AHC) Hot Spot Clustering Using Agglomerative Hierarchical Clustering (AHC) Algorithm. Cogito Smart Journal |, 8(2).
Natsir, R. M. (2022). PENYULUHAN TENTANG PENTINGNYA PEMERIKSAAN GOLONGAN DARAH DENGAN MEDIA BOOKLET DI SD NEGERI 1 PASSO. 6(1).
Prasetya, D. A., & Nurviyanto, I. (2012). Deteksi wajah metode viola jones pada opencv menggunakan pemrograman python. Simposium Nasional RAPI XI FT UMS, 18–23.
Prihatini, P. M., Putra, I. K. G. D., Giriantari, I. A. D., & Sudarma, M. (2019). Complete agglomerative hierarchy d ocument ’ s clustering based on fuzzy L uhn ’ s gibbs l atent dirichlet allocation. 9(3), 2103–2111. https://doi.org/10.11591/ijece.v9i3.pp2103-2111
Rizky Anggraeni, M., & Yudatama, U. (2023). JURNAL MEDIA INFORMATIKA BUDIDARMA Clustering Prevalensi Stunting Balita Menggunakan Agglomerative Hierarchical Clustering. https://doi.org/10.30865/mib.v7i1.5501
Runimeirati, Muis, A., & Muhammad, F. (2023). Pelatihan Text MiningMenggunakan Bahasa Pemrograman Python. Jurnal Pengabdian Kepada Masyarakat, 36–46. https://pusdig.web.id/index.php/abdimas/index
Ryan Harnanda, P., Maulana Fahrudin, T., & Damastuti, N. (2020). GIS implementation and classterization of potential blood donors using the agglomerative hierarchical clustering method. International Journal of Electrical Engineering and Information Technology, 03.
Sains dan Teknologi, J., Jumadi, J., & Sartika, D. (n.d.). PENGOLAHAN CITRA DIGITAL UNTUK IDENTIFIKASI OBJEK MENGGUNAKAN METODE HIERARCHICAL AGGLOMERATIVE CLUSTERING.
Tri, A., Dani, R., Wahyuningsih, S., & Rizki, N. A. (2019). Penerapan Hierarchical Clustering Metode Agglomerative pada Data Runtun Waktu. Jambura Journal of Mathematics, 1. http://ejurnal.ung.ac.id/index.php/jjom,P-
Triayudi, A., & Fitri, I. (2019). A new agglomerative hierarchical clustering to model student activity in online learning. 17(3), 1226–1235. https://doi.org/10.12928/TELKOMNIKA.v17i3.9425
Yang, L., & Li, C. (2023). Identification of Vulnerable Lines in Smart Grid Systems Based on Improved Agglomerative Hierarchical Clustering. IEEE Access, 11(February), 13554–13563. https://doi.org/10.1109/ACCESS.2023.3243806
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Analisis Clustering Donor Darah dengan Metode Agglomerative Hierarchical Clustering
ARTICLE HISTORY
Issue
Section
Copyright (c) 2023 Dessy Yulianti, Teguh Hermanto, Meriska Defriani

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).