Analisis Clustering Donor Darah dengan Metode Agglomerative Hierarchical Clustering


Authors

  • Dessy Yulianti STT Wastukancana Purwakarta, Purwakarta, Indonesia
  • Teguh Hermanto STT Wastukancana Purwakarta, Purwakarta, Indonesia
  • Meriska Defriani STT Wastukancana Purwakarta, Indonesia

DOI:

https://doi.org/10.30865/resolusi.v3i6.977

Keywords:

Clusteing; SEMMA; Agglomerative Hierarchical Clustering; Shilhouette Coefficient

Abstract

Blood is a fluid that has the function of supplying nutrients, transporting metabolic products, sending oxygen and as natural antibodies to fight viruses or bacteria in the body. The Blood Donor Unit (UDD) of PMI (Indonesian Red Cross) is one of the agencies responsible for ensuring the availability of blood. To meet this availability, this agency carries out various programs, in an effort to ensure that the availability of blood is maintained. But in reality, there is a gap between supply and demand, where the need for blood is higher than the supply of blood. The problem of relatively high demand and a minimum number of blood donors can be used as a research topic, with the aim of producing information about the number of donors, blood types and availability, and temporary donor sites in each sub-district in Purwakarta district. This research will use the Agglomerative Hierarchical Clustering (AHC) algorithm, with the methodology used, namely SEMMA, the stages are: sample, explore, mpodify, model, and assess. The attributes used are id, district, blood group, latitude and longitude. From these attributes, clustering is made using the Agglomerative Hierarchical Clustering (AHC) algorithm using Orange, and visualized using Power BI. The research results from this data cluster get 3 clusters, the most donors are in Purwakarta District and followed by Bungursari District. Then the evaluation was assessed using the Silhouette Coefient which resulted in an accuracy rate of 0.713346292

Downloads

Download data is not yet available.

References

R. Ordila, R. Wahyuni, Y. Irawan, and M. Yulia Sari, “PENERAPAN DATA MINING UNTUK PENGELOMPOKAN DATA REKAM MEDIS PASIEN BERDASARKAN JENIS PENYAKIT DENGAN ALGORITMA CLUSTERING (Studi Kasus?: Poli Klinik PT.Inecda),” J. Ilmu Komput., vol. 9, no. 2, pp. 148–153, 2020, doi: 10.33060/jik/2020/vol9.iss2.181.

R. A. Farissa, R. Mayasari, and Y. Umaidah, “Perbandingan Algoritma K-Means dan K-Medoids Untuk Pengelompokkan Data Obat dengan Silhouette Coefficient di Puskesmas Karangsambung,” J. Appl. Informatics Comput., vol. 5, no. 2, pp. 109–116, 2021, doi: 10.30871/jaic.v5i1.3237.

T. D. Andini and L. Farokhah, “Peningkatan Ketersediaan Darah Sesuai Segmentasi Umur Menggunakan K-Means Clustering,” J. Manaj. Inform., vol. 12, no. 2, pp. 126–136, 2022, doi: 10.34010/jamika.v12i2.7897.

R. M. Natsir, “Penyuluhan Tentang Pentingnya Pemeriksaan Golongan Darah Dengan Media Booklet Di Sd Negeri 1 Passo,” SELAPARANG J. Pengabdi. Masy. Berkemajuan, vol. 6, no. 1, p. 341, 2022, doi: 10.31764/jpmb.v6i1.7812.

J. L. Bruse et al., “Detecting Clinically Meaningful Shape Clusters in Medical Image Data: Metrics Analysis for Hierarchical Clustering Applied to Healthy and Pathological Aortic Arches,” IEEE Trans. Biomed. Eng., vol. 64, no. 10, pp. 2373–2383, 2017, doi: 10.1109/TBME.2017.2655364.

P. R. Harnanda, N. Damastuti, and T. M. Fahrudin, “GIS implementation and classterization of potential blood donors using the agglomerative hierarchical clustering method,” IJEEIT Int. J. Electr. Eng. Inf. Technol., vol. 3, no. 2, pp. 44–54, 2021, doi: 10.29138/ijeeit.v3i2.1305.

Z. Arifin, S. Stefanus, and A. M. Soeleman, “Klasterisasi Genre Cerpen Kompas Menggunakan Agglomerative Hierarchical Clustering- Single Linkage,” J. Teknol. Inf. Cyberku, vol. 13, no. 2, pp. 92–100, 2017, [Online]. Available: https://repository.dinus.ac.id/docs/bkd/Artikel_Klasterisasi_Genre_Cerpen_Kompas_Menggunakan_Aglo.pdf

K. P. Simanjuntak and U. Khaira, “Pengelompokkan Titik Api di Provinsi Jambi dengan Algoritma Agglomerative Hierarchical Clustering,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 1, no. 1, pp. 7–16, 2021, doi: 10.57152/malcom.v1i1.6.

Sumber Palang Merah Indonesia

Kusumastuti, R., Bayunanda, E., Muhammad Rifa, A., Ryandy Ghonim Asgar, M., & Inti Ilmawati, F. (n.d.). Clustering Titik Panas Menggunakan Algoritma Agglomerative Hierarchical Clustering (AHC) Hot Spot Clustering Using Agglomerative Hierarchical Clustering (AHC) Algorithm. Cogito Smart Journal |, 8(2).

Natsir, R. M. (2022). PENYULUHAN TENTANG PENTINGNYA PEMERIKSAAN GOLONGAN DARAH DENGAN MEDIA BOOKLET DI SD NEGERI 1 PASSO. 6(1).

Prasetya, D. A., & Nurviyanto, I. (2012). Deteksi wajah metode viola jones pada opencv menggunakan pemrograman python. Simposium Nasional RAPI XI FT UMS, 18–23.

Prihatini, P. M., Putra, I. K. G. D., Giriantari, I. A. D., & Sudarma, M. (2019). Complete agglomerative hierarchy d ocument ’ s clustering based on fuzzy L uhn ’ s gibbs l atent dirichlet allocation. 9(3), 2103–2111. https://doi.org/10.11591/ijece.v9i3.pp2103-2111

Rizky Anggraeni, M., & Yudatama, U. (2023). JURNAL MEDIA INFORMATIKA BUDIDARMA Clustering Prevalensi Stunting Balita Menggunakan Agglomerative Hierarchical Clustering. https://doi.org/10.30865/mib.v7i1.5501

Runimeirati, Muis, A., & Muhammad, F. (2023). Pelatihan Text MiningMenggunakan Bahasa Pemrograman Python. Jurnal Pengabdian Kepada Masyarakat, 36–46. https://pusdig.web.id/index.php/abdimas/index

Ryan Harnanda, P., Maulana Fahrudin, T., & Damastuti, N. (2020). GIS implementation and classterization of potential blood donors using the agglomerative hierarchical clustering method. International Journal of Electrical Engineering and Information Technology, 03.

Sains dan Teknologi, J., Jumadi, J., & Sartika, D. (n.d.). PENGOLAHAN CITRA DIGITAL UNTUK IDENTIFIKASI OBJEK MENGGUNAKAN METODE HIERARCHICAL AGGLOMERATIVE CLUSTERING.

Tri, A., Dani, R., Wahyuningsih, S., & Rizki, N. A. (2019). Penerapan Hierarchical Clustering Metode Agglomerative pada Data Runtun Waktu. Jambura Journal of Mathematics, 1. http://ejurnal.ung.ac.id/index.php/jjom,P-

Triayudi, A., & Fitri, I. (2019). A new agglomerative hierarchical clustering to model student activity in online learning. 17(3), 1226–1235. https://doi.org/10.12928/TELKOMNIKA.v17i3.9425

Yang, L., & Li, C. (2023). Identification of Vulnerable Lines in Smart Grid Systems Based on Improved Agglomerative Hierarchical Clustering. IEEE Access, 11(February), 13554–13563. https://doi.org/10.1109/ACCESS.2023.3243806


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Analisis Clustering Donor Darah dengan Metode Agglomerative Hierarchical Clustering

ARTICLE HISTORY


Published: 2023-07-31
Abstract View: 36 times
PDF Download: 21 times