Analisis Sentimen Wacana Penerapan Jalan Berbayar di Jakarta Menggunakan Algoritma SVM
DOI:
https://doi.org/10.30865/resolusi.v3i6.1054Keywords:
Sentiment; Twitter; ERP; Jakarta; SVM; Road PricingAbstract
Traffic congestion is a serious problem faced by major cities worldwide, including Jakarta. One effort to address traffic congestion in Jakarta is by implementing Electronic Road Pricing (ERP) on certain road sections. The proposal for implementing ERP is a controversial policy in Jakarta, and understanding the sentiment of the community regarding this policy is crucial for decision-making. Twitter, as the largest social media platform, serves as a platform for the public to voice their opinions regarding this policy. This research aims to analyze the discourse sentiment related to the implementation of ERP in Jakarta using the Support Vector Machine (SVM) algorithm. The sentiment data used consists of positive and negative sentiments. The research results show that the SVM algorithm achieved an accuracy rate of 81%, precision of 83%, and recall of 85%.
Downloads
References
A. H. Rahadian, M. Saputra, and D. Ramadhanty, “Analisis Implementasi Kebijakan Sistem Ganjil Genap Dalam Mengatasi Kemacetan Di Provinsi DKI Jakarta,” J. Ilm. untuk Mewujudkan Masy. Madani, vol. 50, no. 1, pp. 50–52, 2022, [Online]. Available: http://ojs.stiami.ac.id.
K. A. B. Permana, M. Sudarma, and W. G. Ariastina, “Analisis Rating Sentimen pada Video di Media Sosial Youtube Menggunakan STRUCT-SVM,” Maj. Ilm. Teknol. Elektro, vol. 18, no. 1, p. 113, 2019, doi: 10.24843/mite.2019.v18i01.p17.
K. Setiawan, B. Rahmatullah, Burhanuddin, A. B. Paryanti, and F. Fauzi, “Komparasi Metode Naive Bayes Dan Support Vector Machine Menggunakan Particle Swarm Optimization Untuk Analisis Sentimen Mobil Esemka,” JISAMAR (Journal Inf. Syst. Applied, Manag. Account. Res., vol. 4, no. 3, pp. 102–111, 2020, [Online]. Available: http://journal.stmikjayakarta.ac.id/index.php/jisamarTelp.+62-21-3905050.
A. Harun and D. Putri Ananda, “Analisa Sentimen Opini Publik Tentang Vaksinasi Covid-19 di Indonesia Menggunakan Naïve bayes dan Decission Tree,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 1, no. 1, pp. 58–64, May 2021, doi: 10.57152/malcom.v1i1.63.
S. Kemp, “DIGITAL 2023: INDONESIA,” 2023. https://datareportal.com/reports/digital-2023-indonesia (accessed Jul. 01, 2023).
P. A. Permatasari, L. Linawati, and L. Jasa, “Survei Tentang Analisis Sentimen Pada Media Sosial,” Maj. Ilm. Teknol. Elektro, vol. 20, no. 2, p. 177, 2021, doi: 10.24843/mite.2021.v20i02.p01.
N. Fitriyah, B. Warsito, and D. A. I. Maruddani, “ANALISIS SENTIMEN GOJEK PADA MEDIA SOSIAL TWITTER DENGAN KLASIFIKASI SUPPORT VECTOR MACHINE (SVM,” J. Gaussian, vol. 9, no. 3, pp. 376–390, Aug. 2020, doi: 10.14710/j.gauss.v9i3.28932.
A. M. Rahat, A. Kahir, and A. K. M. Masum, “Comparison of Naive Bayes and SVM Algorithm based on Sentiment Analysis Using Review Dataset,” in 2019 8th International Conference System Modeling and Advancement in Research Trends (SMART), Nov. 2019, pp. 266–270, doi: 10.1109/SMART46866.2019.9117512.
G. A. Ruz, P. A. Henríquez, and A. Mascareño, “Sentiment analysis of Twitter data during critical events through Bayesian networks classifiers,” Futur. Gener. Comput. Syst., vol. 106, pp. 92–104, May 2020, doi: 10.1016/j.future.2020.01.005.
A. Rahmawati, A. Marjuni, and J. Zeniarja, “ANALISIS SENTIMEN PUBLIK PADA MEDIA SOSIAL TWITTER TERHADAP PELAKSANAAN PILKADA SERENTAK MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE,” CCIT J., vol. 10, no. 2, pp. 197–206, Aug. 2017, doi: 10.33050/ccit.v10i2.539.
I. Iwandini, A. Triayudi, and G. Soepriyono, “Analisa Sentimen Pengguna Transportasi Jakarta Terhadap Transjakarta Menggunakan Metode Naives Bayes dan K-Nearest Neighbor,” J. Inf. Syst. Res., vol. 4, no. 2, pp. 543–550, Jan. 2023, doi: 10.47065/josh.v4i2.2937.
D. Putera and Najid, “PENGENDALIAN PENGGUNAAN MOBIL PRIBADI DENGAN STRATEGI PARKIR Tujuan Penelitian Manfaat / Sasaran Bagi Pengemudi Apabila Diterapkan ERP,” vol. 1, no. 2, pp. 81–89, 2018.
B. Liu, Web Data Mining. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011.
I. S. K. Idris and Y. A. Mustofa, “Typo Checking Menggunakan Algoritma Rabin-Karp,” Jambura J. Electr. Electron. Eng., vol. 4, no. 1, pp. 87–91, Jan. 2022, doi: 10.37905/jjeee.v4i1.12150.
M. P. Dwi Cahyo, Widodo, and B. Prasetya Adhi, “Kinerja Algoritma Support Vector Machine dalam MenentukanKebenaran Informasi Banjir di Twitter,” PINTER J. Pendidik. Tek. Inform. dan Komput., vol. 3, no. 2, pp. 116–121, Dec. 2019, doi: 10.21009/pinter.3.2.5.
H. Müller and J.-C. Freytag, “Problems, methods, and challenges in comprehensive data cleansing,” Jan. 2003.
M. I. Mazdadi, R. Ramadhani, T. H. Saragih, and M. Haekal, “KLASIFIKASI TANAMAN JARAK PAGAR MENGGUNAKAN ALGORITME DEEP LEARNING H2O,” J. Komputasi, vol. 9, no. 1, Apr. 2021, doi: 10.23960/komputasi.v9i1.2774.
D. Darwis, E. S. Pratiwi, and A. F. O. Pasaribu, “Penerapan Algoritma Svm Untuk Analisis Sentimen Pada Data Twitter Komisi Pemberantasan Korupsi Republik Indonesia,” Edutic - Sci. J. Informatics Educ., vol. 7, no. 1, pp. 1–11, 2020, doi: 10.21107/edutic.v7i1.8779.
Merinda Lestandy, Abdurrahim Abdurrahim, and Lailis Syafa’ah, “Analisis Sentimen Tweet Vaksin COVID-19 Menggunakan Recurrent Neural Network dan Naïve Bayes,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 4, pp. 802–808, 2021, doi: 10.29207/resti.v5i4.3308.
M. Syarifuddinn, “ANALISIS SENTIMEN OPINI PUBLIK MENGENAI COVID-19 PADA TWITTER MENGGUNAKAN METODE NAÏVE BAYES DAN KNN,” INTI Nusa Mandiri, vol. 15, no. 1, pp. 23–28, Aug. 2020, doi: 10.33480/inti.v15i1.1347.
A. Asro’i and H. Februariyanti, “Analisis Sentimen Pengguna Twitter Terhadap Perpanjangan Ppkm Menggunakan Metode K-Nearest Neighbor,” J. Khatulistiwa Inform., vol. 10, no. 1, pp. 17–24, 2022, doi: 10.31294/jki.v10i1.12624.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Analisis Sentimen Wacana Penerapan Jalan Berbayar di Jakarta Menggunakan Algoritma SVM
ARTICLE HISTORY
Issue
Section
Copyright (c) 2023 Ahmad Fauzi, Eko harli, Tria Hadi Kusmanto

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).