Optimization of the K-Means Clustering Algorithm Using Davies Bouldin Index in Iris Data Classification


Authors

  • Devanta Abraham Tarigan Devanta STMIK Kristen Neumann Indonesia, Medan, Indonesia

DOI:

https://doi.org/10.30865/klik.v4i1.964

Keywords:

K-Means Clustering; Davies Buoldin Index; Classification Iris

Abstract

Data grouping is done by calculating the shortest distance to the initial cluster center point as the central point in the formation of each group or cluster. The results of the K-Means optimization study with the Davies Bouldin Index k-means clustering by dividing the cluster values 3,5,7,9. In testing the K-3 cluster values, the performance value of the average centroid distance is -0.312, then the K-Means optimization results with Davies Bouldin have a performance percentage of -0.799. Testing the value of the K-5 cluster has a performance value of an average centroid distance of -0.310, then the K-Means optimization results with Davies Bouldin have a performance percentage of -0.806. Testing the value of the K-7 cluster has a performance value of an average centroid distance of -0.310, then the K-Means optimization results with Davies Bouldin have a performance percentage of -0.806. Testing the K-9 cluster values has a performance value of an average centroid distance of -0.310, then the results of the K-Means optimization with Davies Bouldin have a performance percentage of -0.806. From the test results with variations in cluster values 3,5,7,9 it can be concluded that the optimization of the K-Means method with the Davies Bouldin Index testing the K-3 cluster values has better performance with an average value of -0.312 centroid distance then the results of K-optimization Means with Davies Bouldin has a performance percentage: -0.799.

Downloads

Download data is not yet available.

References

DEVI TRIANA, “UNIVERSITAS SUMATERA UTARA Poliklinik UNIVERSITAS SUMATERA UTARA,” J. Pembang. Wil. Kota, vol. 1, no. 3, pp. 82–91, 2018.

D. Diy, “Analisis Data Mining Untuk Memprediksi Lama Perawatan Pasien Covid-19 Bianglala Informatika,” vol. 10, no. 1, pp. 21–29, 2022.

P. H. Putra, A. Hasibuan, and E. A. Marpaung, “Analisis Klasifikasi Metode X-Means Pada Minat dan Bakat Anak Dimasa Pandemi,” vol. 19, no. 2, pp. 424–429, 2022.

S. I. Murpratiwi, I. G. Agung Indrawan, and A. Aranta, “Analisis Pemilihan Cluster Optimal Dalam Segmentasi Pelanggan Toko Retail,” J. Pendidik. Teknol. dan Kejuru., vol. 18, no. 2, p. 152, 2021, doi: 10.23887/jptk-undiksha.v18i2.37426.

S. Ramadhani, D. Azzahra, and T. Z, “Comparison of K-Means and K-Medoids Algorithms in Text Mining based on Davies Bouldin Index Testing for Classification of Student’s Thesis,” Digit. Zo. J. Teknol. Inf. dan Komun., vol. 13, no. 1, pp. 24–33, 2022, doi: 10.31849/digitalzone.v13i1.9292.

Y. Asriningtias and J. Aryanto, “K-Means Algorithm with Davies Bouldin Criteria for Clustering Provinces in Indonesia Based on Number of Events and Impacts of Natural Disasters,” Int. J. Eng., vol. 4, no. 1, pp. 75–80, 2022, [Online]. Available: https://dibi.bnpb.go.id/kwilayah.

B. Jumadi Dehotman Sitompul, O. Salim Sitompul, and P. Sihombing, “Enhancement Clustering Evaluation Result of Davies-Bouldin Index with Determining Initial Centroid of K-Means Algorithm,” J. Phys. Conf. Ser., vol. 1235, no. 1, 2019, doi: 10.1088/1742-6596/1235/1/012015.

T. Wahyudi and T. Silfia, “Implementation of Data Mining Using K-Means Clustering Method To Determine Sales Strategy in S&R Baby Store,” J. Appl. Eng. Technol. Sci., vol. 4, no. 1, pp. 93–103, 2022, doi: 10.37385/jaets.v4i1.913.

Y. Sopyan, A. D. Lesmana, and C. Juliane, “Analisis Algoritma K-Means dan Davies Bouldin Index dalam Mencari Cluster Terbaik Kasus Perceraian di Kabupaten Kuningan,” Build. Informatics, Technol. Sci., vol. 4, no. 3, pp. 1464–1470, 2022, doi: 10.47065/bits.v4i3.2697.

A. Idrus, N. Tarihoran, U. Supriatna, A. Tohir, S. Suwarni, and R. Rahim, “Distance Analysis Measuring for Clustering using K-Means and Davies Bouldin Index Algorithm,” TEM J., vol. 11, no. 4, pp. 1871–1876, 2022, doi: 10.18421/TEM114-55.

A. Badruttamam, S. Sudarno, and D. A. I. Maruddani, “PENERAPAN ANALISIS KLASTER K-MODES DENGAN VALIDASI DAVIES BOULDIN INDEX DALAM MENENTUKAN KARAKTERISTIK KANAL YOUTUBE DI INDONESIA (Studi Kasus: 250 Kanal YouTube Indonesia Teratas Menurut Socialblade),” J. Gaussian, vol. 9, no. 3, pp. 263–272, 2020, doi: 10.14710/j.gauss.v9i3.28907.

D. Triyansyah and D. Fitrianah, “Analisis Data Mining Menggunakan Algoritma K-Means Clustering Untuk Menentukan Strategi Marketing,” J. Telekomun. dan Komput., vol. 8, no. 3, p. 163, 2018, doi: 10.22441/incomtech.v8i3.4174.

F. N. Musid, “Implementasi Algoritma K-Means Clustering Dalam Pengelompokkan Data Jumlah Kerusakan Rumah Berdasarkan Kondisi Di Jawa Barat,” vol. 1, no. 3, pp. 101–114, 2023.

I. F. Ashari, R. Banjarnahor, D. R. Farida, S. P. Aisyah, A. P. Dewi, and N. Humaya, “Application of Data Mining with the K-Means Clustering Method and Davies Bouldin Index for Grouping IMDB Movies,” J. Appl. Informatics Comput., vol. 6, no. 1, pp. 07–15, 2022, doi: 10.30871/jaic.v6i1.3485.

B. Kristanto, A. T. Zy, M. Fatchan, T. Informatika, and P. Bangsa, “Analisis Penentuan Karyawan Tetap Dengan Algoritma K-Means Dan Davies Bouldin Index,” vol. 4, no. 1, pp. 112–120, 2023.

M. Wahyudi and L. Pujiastuti, “Komparasi K-Means Clustering dan K-Medoids dalam Mengelompokkan Produksi Susu Segar di Indonesia Comparison of K-Means Clustering and K-Medoids in Clustering Fresh Milk Production in Indonesia,” vol. 4, no. 2, pp. 243–254, 2022, doi: 10.30812/bite.v4i2.2104.

A. K-means, M. Nurdayat, N. Suarna, and Y. A. Wijaya, “Analisa Clustering untuk Mengelompokan Data Penayangan Film Bioskop Menggunakan,” vol. 6, no. 1, pp. 68–78, 2023.

A. A. Az-zahra, A. F. Marsaoly, I. P. Lestyani, R. Salsabila, and W. O. Z. Madjida, “Penerapan Algoritma K-Modes Clustering Dengan Validasi Davies Bouldin Index Pada Pengelompokkan Tingkat Minat Belanja Online Di Provinsi Daerah Istimewa Yogyakarta,” J. MSA ( Mat. dan Stat. serta Apl. ), vol. 9, no. 1, p. 24, 2021, doi: 10.24252/msa.v9i1.18555.

B. Harahap, “Penerapan Algoritma K-Means Untuk Menentukan Bahan Bangunan Laris (Studi Kasus Pada UD. Toko Bangunan YD Indarung),” Reg. Dev. Ind. Heal. Sci. Technol. Art Life, pp. 394–403, 2019, [Online]. Available: https://ptki.ac.id/jurnal/index.php/readystar/article/view/82.

D. Rifaldi, A. Fadlil, and Herman, “Teknik Preprocessing Pada Text Mining Menggunakan Data Tweet Mental Health,” J. Pendidik. Teknol. Inf., vol. 3, no. 2, pp. 161–171, 2023.

P. H. Putra, B. Purba, and Y. A. Dalimunthe, “Random forest and decision tree algorithms for car price prediction,” vol. 1, no. 2, pp. 81–89, 2023.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Optimization of the K-Means Clustering Algorithm Using Davies Bouldin Index in Iris Data Classification

ARTICLE HISTORY


Published: 2023-08-28
Abstract View: 29 times
PDF Download: 18 times