Naïve Bayes Classifier and Decision Tree Algorithms for Classifying Payment Data
DOI:
https://doi.org/10.30865/klik.v4i1.963Keywords:
Naïve Bayes Classifier; Decision Trees; ClassificationAbstract
In this study the authors will analyze the comparison of the naïve Bayes classifier and decision tree methods in the classification of transaction data types of payments that are often made by customers where the method will analyze which model has the best percentage. The author uses the Kaggle deals payment data set. The data mining methods used to classify data are naïve Bayes classifier, decision tree, and rule based. For this study the Naïve Bayes Classifier method will be used. The results of the research on the accuracy of data classification using a decision tree have an accuracy value of 95.60%. where the predicted data yes with yes answers totaled 232 and answer no 17 with a class precision value of 93.17%. While the predictions for no with yes answers totaled 5 and for answers no totaled 246 with a class precision value of 93.17%. Based on the results of research using the naïve Bayes classifier and decision tree, it is possible to classify data on types of deals payment based on age ranges with different accuracies. From the percentage results, the decision tree method has the highest or best percentage with a value of 95.60%, while the Naïve Bayes classifier has a value of 92.20%.
Downloads
References
A. Zainal Macfud, A. Pandu Kusuma, and W. Dwi Puspitasari, “Analisis Algoritma Naive Bayes Classifier (NBC) Pada Klasifikasi Tingkat Minat Barang Di Toko Violet Cell,” J. Mhs. Tek. Inform., vol. 7, no. 1, pp. 1–8, 2023.
E. Miranda and Julisar, “DATA MINING DENGAN METODE KLASIFIKASI NAÏVE BAYES UNTUK MENGKLASIFIKASIKAN PELANGGAN Eka Miranda , Julisar Program Sistem Informasi , Program Studi Sistem Informasi , Universitas Bina Nusantara,” Infotech, vol. 4, no. 9, pp. 6–12, 2018.
Yunita and I. H. Ikasari, “Perbandingan Metode Klasifikasi C4.5 dan Naïve Bayes untuk Mengukur Kepuasan Pelanggan,” Inform. Univ. Pamulang, vol. 6, no. 3, pp. 2622–4615, 2021, [Online]. Available: http://openjournal.unpam.ac.id/index.php/informatika456.
Y. Alkhalifi, A. Zumarniansyah, R. Ardianto, N. Hardi, and A. E. Augustia, “Comparison of Naive Bayes Algorithm and C.45 Algorithm in Classification of Poor Communities Receiving Non Cash Food Assistance in Wanasari Village Karawang Regency,” J. Techno Nusa Mandiri, vol. 17, no. 1, pp. 37–42, 2020, doi: 10.33480/techno.v17i1.1191.
N. Nurajijah and D. Riana, “Algoritma Naïve Bayes, Decision Tree, dan SVM untuk Klasifikasi Persetujuan Pembiayaan Nasabah Koperasi Syariah,” J. Teknol. dan Sist. Komput., vol. 7, no. 2, pp. 77–82, 2019, doi: 10.14710/jtsiskom.7.2.2019.77-82.
T. Olsson, M. Ericsson, and A. Wingkvist, “To automatically map source code entities to architectural modules with Naive Bayes,” J. Syst. Softw., vol. 183, p. 111095, 2022, doi: 10.1016/j.jss.2021.111095.
C. Aulia Sari, A. Sukmawati, R. Putri Aprilli, P. Sarah Kayaningtias, and N. Yudistira, “Perbandingan Metode Naïve Bayes, Support Vector Machine Dan Decision Tree Dalam Klasifikasi Konsumsi Obat,” J. Litbang Edusaintech, vol. 3, no. 1, pp. 33–41, 2022, [Online]. Available: http://dx.doi.org/10.51402/jle.v3i1.47.
T. A. Q. Putri, A. Triayudi, and R. T. Aldisa, “Implementasi Algoritma Decision Tree dan Naïve Bayes Untuk Klasifikasi Sentimen Terhadap Kepuasan Pelanggan Starbucks,” J. Inf. Syst. Res., vol. 4, no. 2, pp. 641–649, 2023, doi: 10.47065/josh.v4i2.2949.
N. Deepa, J. Sathya Priya, and T. Devi, “Towards applying internet of things and machine learning for the risk prediction of COVID-19 in pandemic situation using Naive Bayes classifier for improving accuracy,” Mater. Today Proc., vol. 62, pp. 4795–4799, 2022, doi: 10.1016/j.matpr.2022.03.345.
P. Khansong, J. Karnjana, S. Laitrakun, and S. Usanavasin, “Customer Service Improvement based on Electricity Payment Behaviors Analysis using Data Mining Approaches,” 2020 Jt. Int. Conf. Digit. Arts, Media Technol. with ECTI North. Sect. Conf. Electr. Electron. Comput. Telecommun. Eng. ECTI DAMT NCON 2020, pp. 114–117, 2020, doi: 10.1109/ECTIDAMTNCON48261.2020.9090699.
I. B. A. Peling, I. N. Arnawan, I. P. A. Arthawan, and I. G. N. Janardana, “Implementation of Data Mining To Predict Period of Students Study Using Naive Bayes Algorithm,” Int. J. Eng. Emerg. Technol., vol. 2, no. 1, p. 53, 2017, doi: 10.24843/ijeet.2017.v02.i01.p11.
C. M. S. Ramdani, A. N. Rachman, and R. Setiawan, “Comparison of the Multinomial Naive Bayes Algorithm and Decision Tree with the Application of AdaBoost in Sentiment Analysis Reviews PeduliLindungi Application,” Int. J. Inf. Syst. Technol. Akreditasi, vol. 6, no. 4, pp. 419–430, 2022.
H. D. Wijaya and S. Dwiasnati, “Implementasi Data Mining dengan Algoritma Naïve Bayes pada Penjualan Obat,” J. Inform., vol. 7, no. 1, pp. 1–7, 2020, doi: 10.31311/ji.v7i1.6203.
A. Tanza and D. T. Utari, “Comparison of the Naïve Bayes Classifier and Decision Tree J48 for Credit Classification of Bank Customers,” EKSAKTA J. Sci. Data Anal., vol. 3, no. 2, pp. 70–77, 2022, doi: 10.20885/eksakta.vol3.iss2.art2.
R. N. Whidhiasih, “Model Naïve Bayes dan Decision Tree untuk Prediksi Penerimaan Spesifikasi Mobil,” JREC (Journal Electr. …, vol. 10, no. 2, pp. 87–98, 2022, [Online]. Available: https://jurnal.unismabekasi.ac.id/index.php/jrec/article/view/5600%0Ahttps://jurnal.unismabekasi.ac.id/index.php/jrec/article/download/5600/2394.
H. Sastypratiwi, Yulianti, and H. Muhardi, “Uji Komparasi Algoritma Naïve Bayes dan Decision Tree Classification Menggunakan Covid-19 Dataset,” J. Edukasi dan Penelit. Inform., vol. 8, no. 1, pp. 1–6, 2022, doi: 10.26418/jp.v8i1.49841.
M. Moshkov, “Decision trees for regular factorial languages,” Array, vol. 15, no. January, p. 100203, 2022, doi: 10.1016/j.array.2022.100203.
D. Syamsudin, Y. C. D. Halundaka, and A. Nugroho, “Prediksi Status Konsumen Produk Celana Menggunakan Naïve Bayes,” JOINTECS (Journal Inf. Technol. Comput. Sci., vol. 5, no. 3, p. 177, 2020, doi: 10.31328/jointecs.v5i3.1435.
W. Guo, G. Wang, C. Wang, and Y. Wang, “Distribution network topology identification based on gradient boosting decision tree and attribute weighted naive Bayes,” Energy Reports, vol. 9, pp. 727–736, 2023, doi: 10.1016/j.egyr.2023.04.256.
A. H. Nasrullah, “Implementasi Algoritma Decision Tree Untuk Klasifikasi Produk Laris,” J. Ilm. Ilmu Komput., vol. 7, no. 2, pp. 45–51, 2021, doi: 10.35329/jiik.v7i2.203.
P. H. Putra, B. Purba, and Y. A. Dalimunthe, “Random forest and decision tree algorithms for car price prediction,” vol. 1, no. 2, pp. 81–89, 2023.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Naïve Bayes Classifier and Decision Tree Algorithms for Classifying Payment Data
ARTICLE HISTORY
Issue
Section
Copyright (c) 2023 Berti Sari Br Sembiring, Mahdianta Pandia, Harianta Sembiring, Desi Margaretta

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).