Penerapan Data Mining Pada Prediksi Kelayakan Pemohon Kredit Mobil Dengan K-Medoids Clustering

Authors

  • Indra Fransiskus Tarigan STIKOM Tunas Bangsa, Pematangsiantar
  • Dedy Hartama STIKOM Tunas Bangsa, Pematangsiantar
  • Suhada STIKOM Tunas Bangsa, Pematangsiantar
  • Saifullah STIKOM Tunas Bangsa, Pematangsiantar
  • Ilham Saputra Saragih STIKOM Tunas Bangsa, Pematangsiantar

Keywords:

Credit, Cars, Data Mining, Clustering, K-Medoids

Abstract

K-Medoids is included in partitioning clustering, where each data must be included in a certain cluster and it is possible for each data included in a particular cluster at one stage of the process, at the next stage it moves to another cluster. The definition of credit is the ability to carry out a purchase or make a loan with a promise, payment will be made at the agreed period. The definition of credit is the ability to carry out a purchase or make a loan with a promise, payment will be made at the agreed time. According to a survey conducted by Gaikindo (Association of Motor Vehicle Industries) in 2015, car purchases on credit reached 85%. This is due to decreased purchasing power, thus encouraging more consumers to buy cars using installments, aka credit. Therefore it is necessary to measure the feasibility of a customer in crediting a car. The goal is to determine the customer's ability to credit a car so that there are no losses on both parties, and reduce credit errors that have not been optimal in permitting credit cars. The policies taken must of course have relevance and be supported by the knowledge that comes from the available data and Data Mining is one of the good methods in providing a clustering pattern model and good for grouping. It is hoped that this research can provide benefits to companies in reducing errors in making decisions on credit applicants at the credit evaluation stage which greatly affects the company's cash flow.

References

E. Iswandy, “Sistem Penunjang Keputusan Untuk Menentukan Dan Santunan Sosial Anak Nagari Dan Penyaluran Bagi Mahasiswa Dan Pelajar Kurang Mampu,” J. TEKNOIF, vol. 3, no. 2, 2015, doi: 2338-2724.

L. N. Rani, “Klasifikasi Nasabah Menggunakan Algoritma C4.5 Sebagai Dasar Pemberian Kredit,” J. KomTekInfo Fak. Ilmu Komput., vol. 2, no. 2, pp. 33–38, 2015.

Y. Mardi, “Data Mining?: Klasifikasi Menggunakan Algoritma C4.5,” J. Edik Inform., vol. 2, no. 2, pp. 213–219, 2017.

R. Prasetya, “Implementasi Jaringan Syaraf Tiruan Backpropagation untuk Memprediksi Ketinggian Air (Studi Kasus: Sungai Ciliwung),” STRING (Satuan Tulisan Ris. dan Inov. Teknol., vol. 1, no. 3, p. 297, 2017, doi: 10.30998/string.v1i3.1558.

Y. S. Luvia, A. P. Windarto, S. Solikhun, and D. Hartama, “Penerapan Algoritma C4.5 Untuk Klasifikasi Predikat Keberhasilan Mahasiswa Di Amik Tunas Bangsa,” Jurasik (Jurnal Ris. Sist. Inf. dan Tek. Inform., vol. 1, no. 1, p. 75, 2017, doi: 10.30645/jurasik.v1i1.12.

M. A. Wahyu, “Penerapan metode k-means clustering untuk mengelompokan potensi produksi buah – buahan di provinsi daerah istimewa yogyakarta,” 2017.

D. F. Pramesti, M. T. Furqon, and C. Dewi, “Implementasi Metode K-Medoids Clustering Untuk Pengelompokan Data Potensi Kebakaran Hutan / Lahan Berdasarkan Persebaran Titik Panas ( Hotspot ),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 1, no. 9, pp. 723–732, 2017.

mohamad jajuli nurul rohmawati, sofi defiyanti, “Implementasi Algoritma K-Means Dalam Pengklasteran Mahasiswa Pelamar Beasiswa,” Jitter 2015, vol. I, no. 2, pp. 62–68, 2015.

S. Defiyanti, M. Jajuli, and N. R. W, “Optimalisasi K - Medoid Dalam Pengklasteran Mahasiswa Pelamar Beasiswa Dengan Cubic Clustering Criterion,” TEKNOSI, vol. 03, no. 01, pp. 211–218, 2017.

Haviluddin, F. Agus, M. Azhari, and A. S. Ahmar, “Artificial neural network optimized approach for improving spatial cluster quality of land value zone,” Int. J. Eng. Technol., vol. 7, no. 2, pp. 80–83, 2018, doi: 10.14419/ijet.v7i2.2.12738.

H. Zayuka, S. M. Nasution, and Y. Purwanto, “Perancangan dan Analisis CLustering Data Menggunakan Metode K-Medoids Untuk Berita Berbahasa Inggris,” in e-Proceeding of Engineering, 2017, vol. 4, no. 2, pp. 2182–2190.

S. Haryati, A. Sudarsono, and E. Suryana, “Implementasi Data Mining Untuk Memprediksi Masa Studi Mahasiswa Menggunakan Algoritma C4.5 (Studi Kasus: Universitas Dehasen Bengkulu),” J. Media Infotama, vol. 11, no. 2, pp. 130–138, 2015.

D. Listiyanti, Y. A. Syahbana, and S. R. Henim, “Perancangan dan Implementasi Aplikasi Android Penentu Salient Area pada Video dengan Algoritma,” in ANNUAL RESEARCH SEMINAR 2016, 2016, vol. 2, no. 1, pp. 96–101.

A. H. Nasrullah, “Penerapan Metode C4.5 untuk Klasifikasi Mahasiswa Berpotensi Drop Out,” Ilk. J. Ilm., vol. 10, no. 2, p. 244, 2018, doi: 10.33096/ilkom.v10i2.300.244-250.

I. W. Kusuma, “Aplikasi Model Backpropagation Neural Network untuk Perkiraan Produksi Tebu pada PT. Perkebunan Nusantara IX,” Pros. Semin. Nas. Mat. dan Pendidik. Mat., pp. 97–108, 2011.

L. A. S. J. H. Sudarmaningtyas, “Jurnal Sistem Informasi,” JSIKA, vol. 3, no. 1, pp. 87–93, 2014.

N. Arifah, A. Murnomo, and A. Suryanto, “Implementasi Neural Network pada Matlab untuk Prakiraan KOnsumsi Beban Listrik Kabupaten Ponorogo Jawa Timur,” vol. 9, no. 1, 2017.

L. Swastina, “Penerapan Algoritma C4.5 untuk Penentuan Jurusan Mahasiswa,” J. Gema Aktual., vol. 2, no. 1, pp. 93–98, 2013.

R. A. Malik, “PERBANDINGAN ALGORITMA K-MEANS CLUSTERING DENGAN FUZZY C- MEANS DALAM MENGUKUR TINGKAT KEPUASAN TERHADAP TELEVISI DAKWAH,” vol. 3, no. 1, pp. 10–21, 2018.

A. P. Windarto, L. S. Dewi, and D. Hartama, “Implementation of Artificial Intelligence in Predicting the Value of Indonesian Oil and Gas Exports With BP Algorithm,” Int. J. Recent Trends Eng. Res., vol. 3, no. 10, pp. 1–12, 2017, doi: 10.23883/IJRTER.2017.3482.J5BBS.

Published

2021-02-26