Klasifikasi Tindakan Persalinan Pada Pasien Ibu Bersalin Menggunakan Metode Decision Tree C4.5


Authors

DOI:

https://doi.org/10.30865/klik.v4i1.1168

Keywords:

Childbirth; Data Mining; Classification; Decision Tree; C4.5

Abstract

Childbirth is the process of delivering a baby, placenta, and amniotic sac from the uterus to the outside world. According to data from the World Health Organization, there are at least 303 thousand women worldwide who die on the verge of or during the childbirth process. Childbirth methods can vary, it could be through normal delivery or cesarean delivery, which are usually based on the health conditions of the mother and baby. Therefore, the selection of the appropriate childbirth method can increase the safety of the mother and baby. Hence, through this research, childbirth methods need to be examined more deeply with the aim of finding out what factors influence them, and then determine the childbirth method based on those factors. In grouping childbirth methods based on childbirth factors, a data mining method is used, namely classification. The Decision Tree C4.5 method is used in this research because of its ability to produce a classification model that is easy to understand and interpret. This model is built based on historical data from Banyuasin Regional General Hospital that includes various health variables and childbirth methods. Testing was conducted using childbirth method data from January 1, 2020 to December 31, 2020. This research produced 20 decision branch patterns or rules that form the basis for determining the label or class data with an accuracy rate of 99.26%.

Downloads

Download data is not yet available.

Author Biographies

Rahmat Fitra Arkamil, Universitas Sriwijaya, Palembang

Fakultas Ilmu Komputer, Program Studi Sistem Informasi

Muhammad Ihsan Jambak, Universitas Sriwijaya, Palembang

Fakultas Ilmu Komputer, Program Studi Manajemen Informatika

References

L. Marlina, R. Nurdianti, dan D. S. Handayani, “Relationship of Therapeutic Communication With Anxiety of First Active Phase Labor Patients in Dr. Soekardjo Tasikmalaya’s Hospital,” Jurnal Kesehatan Indra Husada, vol. 9, no. 1, hal. 72–78, 2021, doi: 10.36973/jkih.v9i1.303.

S. N. Tarmizi, “Turunkan Angka Kematian Ibu melalui Deteksi Dini dengan Pemenuhan USG di Puskesmas – Sehat Negeriku,” Kemenkes RI, 2023. https://sehatnegeriku.kemkes.go.id/baca/rilis-media/20230115/4842206/turunkan-angka-kematian-ibu-melalui-deteksi-dini-dengan-pemenuhan-usg-di-puskesmas/ (diakses Agu 01, 2023).

B. P. Statistik, Profil Penduduk Indonesia Hasil SUPAS 2015, vol. 6, no. 1. Badan Pusat Statistik, 2016.

Bappenas, “Kehidupan Sehat dan Sejahtera,” Kementerian BPPN/Bappenas, 2020. https://sdgs.bappenas.go.id/tujuan-3/.

Kementerian Kesehatan RI, Survei Demografi dan Kesehatan Indonesia Tahun 2017, 1 ed. Jakarta, 2018.

Kemenkes RI, Profil Kesehatan Indonesia Tahun 2019. 2020.

H. Amalia, A. B. Pohan, dan S. Masripah, “Penerapan Feature Weighting Optimized Pada Naïve Bayes Untuk Prediksi Proses Persalinan,” Jurnal PILAR Nusa Mandiri, vol. 15, no. 1, hal. 15–20, 2019, [Daring]. Tersedia pada: http://ejournal.nusamandiri.ac.id/index.php/pilar/article/view/3.

L. P. Widiastini, Buku Ajar Asuhan Kebidanan Pada Ibu Bersalin dan Bayi Baru Lahir, 1 ed. Bogor: In Media, 2018.

M. Kantardzic, Data Mining: Concepts, Models, Methods, and Algorithms, 2 ed. New Jersey: John Wiley & Sons, 2011.

R. Bellazzi dan B. Zupan, “Predictive data mining in clinical medicine: Current issues and guidelines,” International Journal of Medical Informatics, vol. 77, no. 2, hal. 81–97, 2008, doi: 10.1016/j.ijmedinf.2006.11.006.

M. P. S. D. Ningsih dan B. P. P. M. A. C. . Noranita, “Status Proses Persalinan Menggunakan Algoritma C4.5,” Jurnal Masyarakat Informatika, vol. 9, no. 1, hal. 1–13, 2018, doi: 10.14710/jmasif.9.1.31478.

V. Kotu dan B. Deshpande, Predictive Analytics and Data Mining?: Concepts and Practice with RapidMiner. Wyman Street, Waltham: Elsevier.

J. T. M. A. Nazanah dan M. I. Jambak, “Pemanfaatan Algoritma Decision Tree ID3 Bagi Manajemen Bimbel Untuk Menentukan Faktor Kelulusan Pada Sekolah Kedinasan,” KLIK: Kajian Ilmiah Informatika dan Komputer, vol. 3, no. 6, hal. 915–924, 2023, [Daring]. Tersedia pada: http://www.djournals.com/klik/

J. Han, M. Kamber, dan J. Pei, Data Mining Concepts and Techniques, Third. Wyman Street, Waltham: Elsevier, 2012.

D. T. Larose, Discovering Knowledge in Data: An Introduction to Data Mining: Second Edition, 2 ed., vol. 9780470908. New Jersey: John Wiley & Sons, Inc, 2014.

I. C. Setia dan T. Arifin, “Penentuan Penanganan Persalinan Caesar dengan Neural Network dan Particle Swarm Optimization,” SISTEMASI: Jurnal Sistem Informasi, vol. 10, no. 2, hal. 346–356, 2021, [Daring]. Tersedia pada: http://sistemasi.ftik.unisi.ac.id.

C. J. Mantas dan J. Abellán, “Credal-C4.5?: Decision tree based on imprecise probabilities to classify noisy data,” Expert Systems with Applications, vol. 41, no. 10, hal. 4625–4637, 2014, doi: 10.1016/j.eswa.2014.01.017.

D. Setsirichok et al., “Classification of complete blood count and haemoglobin typing data by a C4.5 decision tree, a naïve Bayes classifier and a multilayer perceptron for thalassaemia screening,” Biomedical Signal Processing and Control, vol. 7, no. 2, hal. 202–212, 2012, doi: 10.1016/j.bspc.2011.03.007.

H. Amalia dan Evicienna, “Penentuan Proses Persalinan Ibu Melahirkan Menggunakan Algoritma C4.5,” in Seminar Nasional Cendekiawan, 2017, vol. 2, hal. 101–107.

Y. M. Kusumawardani, “Klasifikasi Persalinan Normal atau Caesar Menggunakan Algoritma C4.5,” Universitas Islam Negeri Sunan Ampel Surabaya, 2019.

M. North, Data Mining for the Masses, Second. Global Text Project, 2016.

R. Colpani, “Mineração de Dados Educacionais: um estudo da evasão no ensino médio com base nos indicadores do Censo Escolar,” Informática na educação: teoria & prática, vol. 21, no. 3, hal. 143–157, 2019, doi: 10.22456/1982-1654.87880.

I. A. C. Manuaba, I. B. G. F. Manuaba, dan I. B. G. Manuaba, Ilmu Kebidanan, Penyakit Kandungan, dan KB untuk Pendidikan Bidan, 2 ed. EGC, 2010.

S. Haryati, A. Sudarsono, dan E. Suryana, “Implementasi Data Mining Untuk Memprediksi Masa Studi Mahasiswa Menggunakan Algoritma C4.5 (Studi Kasus: Universitas Dehasen Bengkulu),” Jurnal Media Infotama, vol. 11, no. 2, hal. 130–138, 2015.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Klasifikasi Tindakan Persalinan Pada Pasien Ibu Bersalin Menggunakan Metode Decision Tree C4.5

ARTICLE HISTORY


Published: 2023-08-28
Abstract View: 72 times
PDF Download: 48 times