Analisis Sentimen Top 10 Traveler Ranked Hotel di Kota Makassar Menggunakan Algoritma Decision Tree dan Support Vector Machine


Authors

  • Yerik Afrianto Singgalen Universitas Katolik Indonesia Atma Jaya, Jakarta, Indonesia

DOI:

https://doi.org/10.30865/klik.v4i1.1153

Keywords:

Hotel; Traveler Ranked; Decision Tree; Support Vector Machine; Makassar

Abstract

Travel planning popularized by influencers sparks audiences to review destinations based on image and attractiveness before designing a trip alone, with family, with friends, or as a couple. This research offers ideas to analyze the sentiment of travelers who use hotel accommodation services in Makassar based on Tripadvisor website review data. The method used is the Cross-Industry Standard Procedure for Data Mining (CRISP-DM) with the following stages: business understanding stage, data understanding stage, data preparation stage, modeling stage, evaluation stage, and deployment stage. The results of this study show that the business understanding stage shows the importance of identifying and analyzing tourist behavior related to the assessment of location, cleanliness, service, and hotel value as a strategic step to develop a hotel imaging program to attract tourists with guest characteristics (solo, couple, business, family). The data understanding stage refers to the features processed according to the CRISP-DM method and supporting data for analysis and discussion of the context of Tripadvisor's Top 10 recommended hotels in Makassar. At the data preparation stage, the amount of text data that has been processed using the Decision Tree (DT) algorithm and Support Vector Machine  (SVM) is 1,138 through data pre-processing (tokenize, transform cases, filter tokens by length, stopwords, stemming). At the modeling stage, the algorithm that shows the best performance is SVM, with an accuracy value of 98.98%, a precision value of 100%, a recall value of 97.96%, an f-measure discount of 98.97%, and an AUC value of 100%. At the evaluation stage, it can be seen that the classification of reviews is dominant on positive sentiment compared to negative sentiment. Thus, the recommendation for the deployment stage is optimizing products and services related to room amenities, room features, room type, cleanliness, service, value, and location. 

Downloads

Download data is not yet available.

References

H. Yuliamir, Y. S. R, S. Hadi, E. Rahayu, and D. Palupiningtyas, “Peranan kepuasaan dalam memediasi pengaruh kualitas layanan , customer experince , dan kepercayaan terhadap loyalitas konsumen hotel bintang 4 di Kota Semarang,” J. Manaj. Perhotelan dan Pariwisata, vol. 6, no. 1, pp. 42–53, 2023.

V. L. C. Runtuwarouw, T. O. Rotinsulu, and ..., “Analisis Pengaruh Arus Kunjungan Wisata, Jumlah Hotel Dan Restoran Terhadap Pertumbuhan Ekonomi Di Kota Tomohon Periode …,” J. Berk. Ilm. …, vol. 22, no. 7, pp. 13–24, 2022, [Online]. Available: https://ejournal.unsrat.ac.id/index.php/jbie/article/view/44251%0Ahttps://ejournal.unsrat.ac.id/index.php/jbie/article/download/44251/38539

Y. S. Halum, E. H. Selamat, F. Jemadi, and S. Hame, “Pendampingan Masyarakat Desa Wisata Sano Nggoang Sebagai Langkah Awal Penetapan Destinasi Wisata Super Prioritas Komodo-Labuan Bajo,” J. Pengabdi. Kpd. Masy., vol. 27, no. 4, pp. 308–313, 2021.

R. Kurniansah and J. J. Purnama, “Komponen-Komponen Pendukung Pariwisata Kuta Lombok Provinsi Nusa Tenggara Barat,” J. Hosp. dan Pariwisata, vol. 6, no. 1, pp. 1–6, 2020, doi: 10.30813/jhp.v6i1.2029.

A. Dianindarwati, B. Setiawati, and J. Usman, “Implementasi Kebijakan Pengembangan Obyek Wisata Pantai Pada Dinas Kebudayaan dan Pariwisata di Kota Makassar,” Kaji. Ilm. Mhs. Adm. Publik, vol. 3, no. 6, pp. 1662–1672, 2022.

Hardianti and Nasrullah, “Pengaruh Bauran Promosi Terhadap Keputusan Wisatawan Berkunjung pada Fort Rotterdam di Kota Makasar,” J. Pariwisata Budaya dan Keagamaan, vol. 1, no. 2, pp. 84–91, 2023.

A. S. Sasmita, R. Hayati, and P. Sasmita, “Implementasi Prosedur Kerja Guest Service Agent Terhadap Penerapan Adaptasi Kebiasaan Baru Dalam Melayani Tamu Check-in Dan Check-Out Di 5 Hotel Bintang 4 Kota Makassar,” Hosp. Gastron. Res. J., vol. 5, no. 1, pp. 48–63, 2023.

M. Fiqih, O. Hattah, M. Asdar, and I. Nursyamsi, “Analisis Pengaruh Bauran Pemasaran terhadap Daya Tarik Pelanggan pada Hotel Claro di Kota Makassar,” SEIKO J. Manag. Bus., vol. 6, no. 1, pp. 208–224, 2023, doi: 10.37531/sejaman.v6i1.3845.

I. G. A. P. Arimbawa, A. Goeliling, T. Ripal, A. B. Peringga Putra, and A. R. Amin, “The Effect of Communication, Motivation and Job Satisfaction on Employee Performance: Empirical Study Of Hotel Harper Prints By Aston, Makassar,” Pusaka J. Tour. Hosp. Travel Bus. Event, vol. 5, no. 1, pp. 20–32, 2023, doi: 10.33649/pusaka.v5i1.195.

T. Clarita, “Analisis Sentimen Emosional pada Tamu Hotel yang Menginap di Wilayah Isolasi Mandiri Covid-19 (Analisis Konten pada Tamu Hotel Melalui Laman Web Tripadvisor),” SABA J. Tour. Res., vol. 1, no. 1, pp. 32–44, 2023.

Y. Harwani, “Constructing Brand Personality from the TripAdvisor Online Reviews,” Int. J. Bus. Manag. Technol., vol. 5, no. 4, pp. 152–157, 2021, [Online]. Available: https://www.theijbmt.com/archive/0940/1938740165.pdf

Y. L. Sukmana, “Implementasi CRISP-DM dengan Menggunakan Tableau untuk Visualisasi Data dalam Upaya Peningkatan Impor Pada KPU Bea Cukai Tipe B Batam,” J. Perspekt. Bea dan Cukai, vol. 7, no. 1, pp. 19–38, 2023.

Y. Yudiana, A. Y. Agustina, and N. Khofifah, “Prediksi Customer Churn Menggunakan Metode CRISP-DM Pada Industri Telekomunikasi Sebagai Implementasi Mempertahankan Pelanggan,” IJIEB Indones. J. Islam. Econ. Bus., vol. 8, no. 1, pp. 1–20, 2023, [Online]. Available: http://e-journal.lp2m.uinjambi.ac.id/ojp/index.php/ijoieb

L. A. Pramesti and N. Pratiwi, “Analisis Sentimen Twitter Terhadap Program MBKM Menggunakan Decision Tree dan Support Vector Machine,” J. Inf. Syst. Res., vol. 4, no. 4, pp. 1145–1154, 2023, doi: 10.47065/josh.v4i4.3807.

N. T. Romadloni and W. Supriyanti, “Analisis Sentimen Penggunaan Teknologi Pada Pendidikan Anak Usia Dini,” J. Ilm. Sinus, vol. 21, no. 2, pp. 101–109, 2023.

M. F. Asshiddiqi and K. M. Lhaksmana, “Perbandingan Metode Decision Tree dan Support Vector Machine untuk Analisis Sentimen pada Instagram Mengenai Kinerja PSSI,” in e-Proceeding of Engineering, 2020, vol. 7, no. 3, pp. 9936–9948.

D. N. Fitriana and Y. Sibaroni, “Sentiment Analysis on KAI Twitter Post Using Multiclass Support Vector Machine (SVM),” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 4, no. 5, pp. 846–853, 2020, doi: 10.29207/resti.v4i5.2231.

A. Karim, “Perbandingan Prediksi Kemiskinan di Indonesia Menggunakan Support Vector Machine (SVM) dengan Regresi Linear,” J. Sains Mat. dan Stat., vol. 6, no. 1, pp. 107–112, 2020, doi: 10.24014/jsms.v6i1.9259.

E. A. Nida, “Analisis Kinerja Algoritma Support Vector Machine (SVM) Guna Pengambilan Keputusan Beli/Jual Pada Saham PT Elnusa Tbk. (ELSA),” J. Transform., vol. 17, no. 2, pp. 160–170, 2020, doi: 10.26623/transformatika.v17i2.1649.

S. I. Novichasari and R. Rakhmawati, “Komparasi Neural Network dan Support Vector Machine untuk Data Time Series dan Non-Time Series,” J. Prodi Tek. Inform. UNW, vol. 5, no. 1, pp. 4–9, 2023.

D. D. Nada, Soehardjoepri, and R. M. Atok, “Perbandingan Analisis Sentimen Mengenai BPJS pada Media Sosial Twitter Menggunakan Naïve Bayes Classifier (NBC) dan Support Vector Machine (SVM),” J. Sains dan Seni ITS, vol. 11, no. 6, p. 480=485, 2023, doi: 10.12962/j23373520.v11i6.96330.

G. Gumelar, Kusrini, and H. Al Fatta, “Kombinasi Algoritma Klasifikasi Dengan Algoritma Oversampling Untuk Menangani Ketidakseimbangan Kelas Pada Level Data,” J. Tek. Inform. dan Sist. Inf., vol. 10, no. 2, pp. 29–39, 2023.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Analisis Sentimen Top 10 Traveler Ranked Hotel di Kota Makassar Menggunakan Algoritma Decision Tree dan Support Vector Machine

Dimensions Badge

ARTICLE HISTORY


Published: 2023-08-25
Abstract View: 513 times
PDF Download: 403 times

Most read articles by the same author(s)