Penerapan Naïve Bayes Classifier, Support Vector Machine, dan Decision Tree untuk Meningkatkan Deteksi Ancaman Keamanan Jaringan


Authors

  • Ahmad Zy Universitas Pelita Bangsa, Bekasi, Indonesia
  • Ananto Tri Sasongko Universitas Pelita Bangsa, Bekasi, Indonesia
  • Antika Zahrotul Kamalia Universitas Pelita Bangsa, Bekasi, Indonesia

DOI:

https://doi.org/10.30865/klik.v4i1.1134

Keywords:

Naïve Bayes Classifier; Support Vector Machine (SVM); Decision Tree; Machine Learning; Network Security

Abstract

This research aims to implement three machine learning algorithms, namely Naïve Bayes Classifier, Support Vector Machine (SVM), and Decision Tree, to enhance network security threat detection. The study utilizes data from multiple sources to train the machine learning models and evaluate their performance in detecting network security threats such as malware, ransomware, and spyware. The research results indicate that all three machine learning algorithms can improve the effectiveness of network security threat detection, surpassing conventional methods in terms of accuracy. Decision Tree yields the best results with a precision of 0.98, , followed by SVM with a precision of 90%, While Naïve Bayes Classifier a precision of 0.86.

Downloads

Download data is not yet available.

Author Biographies

Ananto Tri Sasongko, Universitas Pelita Bangsa, Bekasi

 

 

Antika Zahrotul Kamalia, Universitas Pelita Bangsa, Bekasi

 

 

References

P. Sharma, B. Dash, and M. F. Ansari, “Anti-Phishing Techniques – A Review of Cyber Defense Mechanisms,” IJARCCE, vol. 11, no. 7, Jul. 2022, doi: 10.17148/ijarcce.2022.11728.

A. Damuri, U. Riyanto, H. Rusdianto, and M. Aminudin, “Implementasi Data Mining dengan Algoritma Naïve Bayes Untuk Klasifikasi Kelayakan Penerima Bantuan Sembako,” JURIKOM (Jurnal Riset Komputer), vol. 8, no. 6, p. 219, Dec. 2021, doi: 10.30865/jurikom.v8i6.3655.

R. Sistem, P. N. Andono, and E. H. Rachmawanto, “JURNAL RESTI Evaluasi Ekstraksi Fitur GLCM dan LBP Menggunakan Multikernel SVM,” vol. 1, no. 10, pp. 1–9, 2021.

X. Xiong, S. Hu, D. Sun, S. Hao, H. Li, and G. Lin, “Detection of false data injection attack in power information physical system based on SVM–GAB algorithm,” Energy Reports, vol. 8, pp. 1156–1164, Aug. 2022, doi: 10.1016/j.egyr.2022.02.290.

Y. A. Wijaya, “Analisa Klasifikasi menggunakan Algoritma Decision Tree pada Data Log Firewall,” JURSIMA (Jurnal Sistem Informasi dan …, 2021, [Online]. Available: https://ejournal.stmikgici.ac.id/index.php/jursima/article/view/303

A. Yazdinejad, M. Kazemi, R. M. Parizi, A. Dehghantanha, and H. Karimipour, “An ensemble deep learning model for cyber threat hunting in industrial internet of things,” Digital Communications and Networks, vol. 9, no. 1, pp. 101–110, Feb. 2023, doi: 10.1016/j.dcan.2022.09.008.

B. Rathore, “Integration of Artificial Intelligence& It’s Practices in Apparel Industry.”

A. Khraisat, I. Gondal, P. Vamplew, and J. Kamruzzaman, “Survey of intrusion detection systems: techniques, datasets and challenges,” Cybersecurity, vol. 2, no. 1, Dec. 2019, doi: 10.1186/s42400-019-0038-7.

M. Sharma, H. Elmiligi, and F. Gebali, “A Novel Intrusion Detection System for RPL-Based Cyber–Physical Systems,” IEEE Canadian Journal of …, 2021, [Online]. Available: https://ieeexplore.ieee.org/abstract/document/9429862/

A. K. Dutta, R. Negi, and S. K. Shukla, “Robust multivariate anomaly-based intrusion detection system for cyber-physical systems,” International Symposium on Cyber Security …, 2021, doi: 10.1007/978-3-030-78086-9_6.

T. Lin, P. Wu, and F. Gao, “Information security of flowmeter communication network based on multi-sensor data fusion,” Energy Reports, vol. 8, pp. 12643–12652, Nov. 2022, doi: 10.1016/j.egyr.2022.09.072.

S. R. Khonde and U. Venugopal, “Hybrid architecture for distributed intrusion detection system,” Ingenierie des Systemes d’Information, vol. 24, no. 1, pp. 19–28, 2019, doi: 10.18280/isi.240102.

J. Ding, A. Qammar, Z. Zhang, A. Karim, and H. Ning, “Cyber Threats to Smart Grids: Review, Taxonomy, Potential Solutions, and Future Directions,” Energies (Basel), vol. 15, no. 18, Sep. 2022, doi: 10.3390/en15186799.

S. Moualla, K. Khorzom, and A. Jafar, “Improving the Performance of Machine Learning-Based Network Intrusion Detection Systems on the UNSW-NB15 Dataset,” Comput Intell Neurosci, vol. 2021, pp. 1–13, Jun. 2021, doi: 10.1155/2021/5557577.

“NSL-KDD | Kaggle.” https://www.kaggle.com/datasets/hassan06/nslkdd (accessed Jul. 24, 2023).


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Penerapan Naïve Bayes Classifier, Support Vector Machine, dan Decision Tree untuk Meningkatkan Deteksi Ancaman Keamanan Jaringan

Dimensions Badge

ARTICLE HISTORY


Published: 2023-08-31
Abstract View: 527 times
PDF Download: 436 times