Clustering Data Menggunakan Metode K-Means untuk Rekomendasikan Pembelajaran Akademik bagi Siswa Aktif dalam Ekstrakurikuler


Authors

  • Muhammad Azzam Al Fauzie Universitas Teknologi Sumbawa, Sumbawa, Indonesia
  • Yuliadi Yuliadi Universitas Teknologi Sumbawa, Sumbawa, Indonesia
  • Juniardi Akhir Putra Universitas Teknologi Sumbawa, Sumbawa, Indonesia

DOI:

https://doi.org/10.30865/klik.v4i1.1116

Keywords:

Learning Methods; Academic Performance; Extracurricular; K-Means Clustering; Data Mining; Major Recommendations

Abstract

Student academic achievement includes their achievements and performance in academic fields, such as exam results, report card scores, and achievements in certain subjects. The student's academic achievement has an effect on further study to a higher level. In this study, grouping of student data was carried out using the K-Means Clustering algorithm. The data used are grades VIII and IX grade report cards. The results of grouping the data showed that there were eight clusters with different numbers of students using three categories of cluster sizes, namely smart, moderate, and moderate. Based on data analysis, it was found that English needs to get special attention in learning. Students with balanced grades between science and social studies can choose a major according to their interests. Students in the moderate cluster tend to have dominant grades in the Science major, while students in the moderate cluster tend to have dominant grades in the Social Sciences major. The majority of students have grades above 80, indicating good performance. The grouping of these data forms the basis for selecting appropriate majors, optimal participation in extracurricular activities, and support for students with sufficient grades. It is hoped that the research results will become a recommendation for schools to improve students' understanding and maintain a balance between academic and extracurricular activities

Downloads

Download data is not yet available.

References

Permendikbud, “Permendikbud Nomor 62 Tahun 2014,” 2014, Accessed: Mar. 30, 2023. [Online]. Available: https://jdih.kemdikbud.go.id/sjdih/siperpu/dokumen/salinan/Permendikbud%20Nomor%2062%20Tahun%202014.pdf

A. W. Rifki and Listyaningsih, “Hubungan Kegiatan Ekstrakulikuler Pecinta Alam dengan Sikap Peduli Lingkungan Siswa di SMK Negeri 2 BOJONEGORO,” Kaji. Moral dan Kewarganegaraan, vol. 05, no. 20, pp. 426–440, 2017, [Online]. Available: https://www.google.co.id/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwiO99HY-quAAxXqXWwGHeD1CQU4ChAWegQIEhAB&url=https%3A%2F%2Fejournal.unesa.ac.id%2Findex.php%2Fjurnal-pendidikan-kewarganegaraa%2Farticle%2Fdownload%2F18452%2F16826%2F

R. Gupitha, “Penentuan Ekstra Kurikuler (EKSKUL) Siswa SMK Terpadu Lampang Subang Dengan Algoritma C 4.5,” In Global, vol. 4, no. 2, pp. 31–37, 2018, Accessed: Mar. 30, 2023. [Online]. Available: https://core.ac.uk/download/pdf/275909776.pdf

Nisrinah, “Pengelolaan Layanan Ekstrakulikuler di SMAIT Al-Fityan School Kabupaten Goawa,” Universitas Negeri Makasar, 2022. [Online]. Available: http://eprints.unm.ac.id/23888/1/SKRIPSI NISRINAH 1743041010.pdf

K. Shilviana and T. Hamami, “Pengembangan Kegiatan Kokurikuler dan Ekstrakurikuler,” Palapa, vol. 8, no. 1, pp. 159–177, 2020, doi: 10.36088/palapa.v8i1.705.

N. Sugiarto, “Aktivitas ekstrakurikuler dalam menunjang pembelajaran pai di kelas viii SMP Islam Darussalam Palangka Raya,” Institut Agama Islam Negeri Palangkaraya, 2020. [Online]. Available: http://digilib.iain-palangkaraya.ac.id/3146/%0Ahttp://digilib.iain-palangkaraya.ac.id/3146/1/Skripsi Nyono Sugiarto - 1301111791.pdf

T. P. Madrasah, “RKJM-MTsN 1 Lampung Barat,” 2022. https://lampung.kemenag.go.id/files/lampung/file/file/MTsN1LampungBarat/ablr1459909546.pdf

N. Mufidah, “Metode Pembelajaran Al-Ashwat,” al Mah?ra: Jurnal Pendidikan Bahasa Arab, vol. 4, no. 2, pp. 199–218, Dec. 2018, doi: 10.14421/ALMAHARA.2018.042-03.

M. Tamba, “Analisa Clustering Laporan Prestasi Belajar Siswa/Siswi Menggunakan K-Means (Studi Kasus?: Sekolah SMA N 21 Medan),” Pelita Informatika: Informasi dan Informatika, vol. 7, no. 1, pp. 92–96, 2018, Accessed: Mar. 30, 2023. [Online]. Available: http://ejurnal.stmik-budidarma.ac.id/index.php/pelita/article/view/893

P. A. Jusia, F. M. Irfan, and K. Kurniabudi, “Clustering data untuk rekomendasi penentuan jurusan perguruan tinggi menggunakan metode K-Means.,” ikraith-informatika, vol. 3, no. 3, pp. 75–84, 2019, Accessed: Apr. 12, 2023. [Online]. Available: http://journals.upi-yai.ac.id/index.php/ikraith-informatika/article/download/596/445

T. R. Rivanthio, M. Ramdhani, and A. Sahi, “Penerapan Teknik Clustering Data Mining untuk Memprediksi Kesesuaian Jurusan Siswa (Studi Kasus SMA PGRI 1 Subang),” Faktor Exacta, vol. 13, no. 2, p. 125, Aug. 2020, doi: 10.30998/faktorexacta.v13i2.6588.

E. Rahmah, E. Haerani, A. Nazir, S. Ramadhani, and T. Informatika UIN Sultan Syarif Kasim Riau Jl Soebrantas Km, “Penerapan Algoritma K-Medoids Clustering Untuk Menentukan Srategi Promosi Pada Data Mahasiswa (Studi Kasus?: Stikes Perintis Padang),” Jurnal Nasional Komputasi dan Teknologi Informasi, vol. 5, no. 3, 2022, Accessed: Mar. 30, 2023. [Online]. Available: https://ojs.serambimekkah.ac.id/jnkti/article/view/4355

P. A. Jusia, S. Kom, and M. Kom, “Face Recognition Menggunakan Metode Algoritma Viola Jones Dalam Penerapan Computer Vision,” Jurnal PROCESSOR, vol. 11, no. 1, pp. 663–675, 2016, Accessed: Apr. 12, 2023. [Online]. Available: https://ejournal.unama.ac.id/index.php/processor/article/view/316

Y. Indrasari, “Efesiensi Saluran Distribusi Pemasaran Kopi Rakyat Di Desa Gending Waluh Kecamatan Sempol (IJEN) Bondowoso,” Jurnal Manajemen Pemasaran, vol. 14, no. 1, pp. 44–50, 2020, Accessed: Mar. 29, 2023. [Online]. Available: https://doi.org/10.9744/pemasaran.14.1.44-50

Denny Jollyta, William Ramadhan, & Muhammad Zarlis. (2020). Konsep Data Mining Dan Penerapan (Dwi Novidianntoko, Ed.). September 2020.

Nasir, J. (2020). Penerapan Data Mining Clustering Dalam Pengelompokan Buku Dengan Metode K-Means. In Jurnal Simetris (Vol. 11). Https://doi.org/10.33022/ijcs.v10i1.3008

Dunham and Margareth H, Data Mining Introductory and Advanced Topics. Pearson Education India, 2003.

F. L. Sibuea and A. Sapta, “Pemetaan Siswa Berprestasi Menggunakan Metode K-Means Clustering,” vol. 1, pp. 85–92, 2017, Accessed: Mar. 30, 2023. [Online]. Available: https://doi.org/10.33330/jurteksi.v4i1.28

I. K. Juni Arta, G. Indrawan, and G. R. Dantes, “Data Mining Rekomendasi Calon Mahasiswa Berprestasi Di Stmik Denpasar Menggunakan Metode Technique for Others Reference By Similarity To Ideal Solution,” JST (Jurnal Sains dan Teknol., vol. 5, no. 2, pp. 11–21, 2017, doi: 10.23887/jstundiksha.v5i2.8549.

N. S. Luki Ardiantoro , Soffa Zahara, “Pemanfaatan Knowledge Data Discovery(KDD) Pada Pola Permainan Atlet Bulutangkis,” Explor. IT J. Keilmuan dan Apl. Tek. Inform., vol. 11, no. 1, pp. 1–6, 2019, doi: 10.35891/explorit.v11i1.1467


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Clustering Data Menggunakan Metode K-Means untuk Rekomendasikan Pembelajaran Akademik bagi Siswa Aktif dalam Ekstrakurikuler

ARTICLE HISTORY


Published: 2023-08-31
Abstract View: 9 times
PDF Download: 4 times