Komparasi Tingkat Akurasi Random Forest dan Decision Tree C4.5 Pada Klasifikasi Data Penyakit Infertilitas
DOI:
https://doi.org/10.30865/klik.v4i1.1115Keywords:
Classification; Infertility; Random ForestAbstract
Male fertility has declined over the past two decades. The decrease is due to environmental factors, such as lifestyle habits that can affect the quality of a man's sperm. Artificial intelligence technology is currently developing as a methodology for health decision support systems. In the process of predicting infertility can be done by applying Machine Learning technology. This study focuses on comparing the Random Forest classification method with Decision Tree C4.5 to see the level of accuracy in predicting the success of infertility data classification. Data for the Fertility Dataset was obtained from the UCI Machine Learning Repository with a total of 100 data records, 10 attributes and 2 attribute classes, namely Normal and Altered. The parameters used are age, childhood diseases, accidents or trauma, surgical operations, alcohol consumption and smoking habits. Then evaluate the testing of the two methods, namely by using 10fold Cross Validation. Based on the results of Random Forest and Decision Tree C4.5 testing, the average accuracy of Random Forest is 87.20% and Decision Tree C4.5 with an accuracy rate of 85.90%. From the results obtained, it can be concluded that Random Forest is a superior method by 1.3% when compared to Decision Tree C4.5 in predicting accuracy in the Fertility Dataset.
Downloads
References
T. W. Pratiwi and T. Arifin, “Optimasi Decision Tree Menggunakan Particle Swarm Optimization untuk Klasifikasi Kesuburan pada Pria,” Sist. J. Sist. Inf., vol. 10, no. 1, pp. 1–12, 2021, doi: 10.35957/jatisi.v7i3.361.
A. Amrulloh and A. P. Wibowo, “Implementasi Algoritma Decission Tree Untuk Mengklasifikasi Kondisi Kesuburan Pria,” JASIEK (Jurnal Apl. Sains, Informasi, Elektron. dan Komputer), vol. 1, no. 1, pp. 7–11, 2019, doi: 10.26905/jasiek.v1i1.3096.
U. Khaira, N. Syarief, and I. Hayati, “Prediksi Tingkat Fertilitas Pria Dengan Algoritma Pohon Keputusan Cart,” Progr. Stud. Sist. Informasi, Fak. Sains dan Teknol. Univ. Jambi, vol. 5, no. 1, pp. 35–42, 2020.
A. H. Baksir, A. Fuad, F. Tempola, and Rosihan, “Prediksi Tingkat Kualitas Kesuburan Pria Dengan Jaringan Saraf Tiruan Backpropagation,” JIKO (Jurnal Inform. dan Komputer), vol. 3, no. 2, pp. 107–112, 2020, doi: 10.33387/jiko.
D. Gil, J. L. Girela, J. De Juan, M. J. Gomez-Torres, and M. Johnsson, “Predicting seminal quality with artificial intelligence methods,” Expert Syst. Appl., vol. 39, no. 16, pp. 12564–12573, 2012, doi: 10.1016/j.eswa.2012.05.028.
S. J. Siregar, A. I. Lubis, and E. F. Ginting, “Penerapan Neural Network Dalam Klasifikasi Citra Permainan Batu Kertas Gunting dengan Probabilistic Neural Network,” Build. Informatics, Technol. Sci., vol. 3, no. 3, pp. 420–425, 2021, doi: 10.47065/bits.v3i3.1143.
A. I. Lubis, U. Erdiansyah, and R. Siregar, “Komparasi Akurasi pada Naive Bayes dan Random Forest dalam Klasifikasi Penyakit Liver,” J. Comput. Eng. Syst. Sci., vol. 7, no. 1, pp. 81–89, 2022.
U. Erdiansyah, A. Irmansyah Lubis, and K. Erwansyah, “Komparasi Metode K-Nearest Neighbor dan Random Forest Dalam Prediksi Akurasi Klasifikasi Pengobatan Penyakit Kutil,” J. Media Inform. Budidarma, vol. 6, no. 1, p. 208, 2022, doi: 10.30865/mib.v6i1.3373.
F. M. Hana and Universitas, “Klasifikasi Penderita Penyakit Diabetes Menggunakan Algoritma Decision Tree C4.5,” J. Sist. Komput. dan Kecerdasan Buatan, vol. 4, no. 1, pp. 32–39, 2020.
A. Irmansyah Lubis, F. Setiawan, and L. Lusiyanti, “Penentuan Peringkat Konsentrasi Tingkat Kesuburan Sperma Menggunakan Metode MOORA,” Digit. Transform. Technol., vol. 1, no. 2, pp. 62–68, 2021, doi: 10.47709/digitech.v1i2.1116.
A. I. Lubis and F. Setiawan, “Komparasi Kinerja ELECTRE dan MOORA dalam Menentukan Konsentrasi Tingkat Kesuburan Sperma,” vol. 13, no. 01, pp. 99–105, 2022, doi: 10.35970/infotekmesin.v13i1.1012.
A. I. Lubis and R. Chandra, “Forward Selection Attribute Reduction Technique for Optimizing Naïve Bayes Performance in Sperm Fertility Prediction,” Sinkron, vol. 8, no. 1, pp. 275–285, 2023, doi: 10.33395/sinkron.v8i1.11967.
R. Supriyadi, W. Gata, N. Maulidah, and A. Fauzi, “Penerapan Algoritma Random Forest Untuk Menentukan Kualitas Anggur Merah,” E-Bisnis J. Ilm. Ekon. dan Bisnis, vol. 13, no. 2, pp. 67–75, 2020, doi: 10.51903/e-bisnis.v13i2.247.
U. Khultsum and A. Subekti, “Penerapan Algoritma Random Forest dengan Kombinasi Ekstraksi Fitur Untuk Klasifikasi Penyakit Daun Tomat,” J. Media Inform. Budidarma, vol. 5, no. 1, p. 186, 2021, doi: 10.30865/mib.v5i1.2624.
A. B. Wibisono and A. Fahrurozi, “Perbandingan Algoritma Klasifikasi Dalam Pengklasifikasian Data Penyakit Jantung Koroner,” J. Ilm. Teknol. dan Rekayasa, vol. 24, no. 3, pp. 161–170, 2019, doi: 10.35760/tr.2019.v24i3.2393.
N. Sunanto and G. Falah, “Penerapan Algoritma C4.5 Untuk Membuat Model Prediksi Pasien Yang Mengidap Penyakit Diabetes,” Rabit J. Teknol. dan Sist. Inf. Univrab, vol. 7, no. 2, pp. 208–216, 2022, doi: 10.36341/rabit.v7i2.2435.
R. Estian Pambudi, Sriyanto, and Firmansyah, “Klasifikasi Penyakit Stroke Menggunakan Algoritma Decision TreeC.45,” Ijccs, vol. x, No.x, no. x, pp. 1–5, 2022.
M. Ardiansyah, A. Sunyoto, and E. T. Luthfi, “Analisis Perbandingan Akurasi Algoritma Naïve Bayes Dan C4.5 untuk Klasifikasi Diabetes,” Edumatic J. Pendidik. Inform., vol. 5, no. 2, pp. 147–156, 2021, doi: 10.29408/edumatic.v5i2.3424.
U. Erdiansyah, A. I. Lubis, and G. Syahputra, “Klasifikasi Penyakit Diabetic Retinopathy Menggunakan Multilayer Perceptron,” JAISE J. Artif. Intell. Softw. Eng., vol. 2, no. 1, pp. 1–6, 2022.
A. I. Lubis, S. Sibagariang, and N. Ardi, “Classification of Alzheimer Disease from MRI Image Using Combination Naïve Bayes and Invariant Moment,” Proc. 5th Int. Conf. Appl. Eng. ICAE 2022, 5 Oct. 2022, Batam, Indones., pp. 1–12, 2023, doi: 10.4108/eai.5-10-2022.2327750.
N. G. Ramadhan and A. Khoirunnisa, “Klasifikasi Data Malaria Menggunakan Metode Support Vector Machine,” Media Inform. Budidarma, vol. 5, no. 4, pp. 1580–1584, 2021, doi: 10.30865/mib.v5i4.3347.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Komparasi Tingkat Akurasi Random Forest dan Decision Tree C4.5 Pada Klasifikasi Data Penyakit Infertilitas
ARTICLE HISTORY
Issue
Section
Copyright (c) 2023 Agung Prabowo, Sumita Wardani, Rico Wijaya Dewantoro, Wilfredo Wesly, Leonardo

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).