Analisis Sentimen Review Produk Acne Spot Treatment di Female Daily Menggunakan Algoritma K-Nearest Neighbor
DOI:
https://doi.org/10.30865/klik.v4i1.1070Keywords:
Female Daily; Analisis Sentimen; K-Nearest Neighbor; Acne; Acne Spot TreatmentAbstract
Acne, besides having a negative impact on the skin, also has a psychological impact, namely embarrassment and reduced self-confidence, which can be prevented by providing medical knowledge to treat acne. One of the products used for acne treatment is acne spot treatment. The large number of advertisements on social media related to acne spot treatment products can influence larger purchases, but the product is not necessarily good. Seeing direct reviews from acne spot treatment users can increase information regarding whether the product is good or not. One website that provides reviews related to beauty products is Female Daily, but the large number of reviews does not allow reading in its entirety. Of course, this takes time. Sentiment analysis is used to overcome this problem, which aims to classify acne spot treatment reviews as Positive or negative. In this study, the classification method used is K-Nearest Neighbor because it has a simple concept that is easy to apply and understand. The sentiment results showed that the reviews that contained the most positive sentiments were Whitelab with 1,190 reviews, and the ones that contained the most negative sentiments were Skin Games with 173 reviews. The results of the classification using KNN are that the best accuracy is the Whitelab brand at 97%, then the Skin Game gets 81% accuracy, and the lowest accuracy value is the ERHA brand at 75%
Downloads
References
N. Sifatullah and Z. Zulkarnain, “Jerawat (Acne vulgaris): Review penyakit infeksi pada kulit,” Pros. Semin. Nas. Biol., no. November, pp. 19–23, 2021, [Online]. Available: http://journal.uin-alauddin.ac.id/index.php/psb/article/view/22212%0Ahttp://journal.uin-alauddin.ac.id/index.php/psb/article/download/22212/12470
P. Cintia, N. Artasih, W. Mulianingsih, S. Nirmala, and L. Mariam, “HUBUNGAN PERILAKU MEMBERSIHKAN WAJAH DENGAN KEJADIAN ACNE VULGARIS PADA MAHASISWA LAKI-LAKI Email?: putucintianandaartasih@gmail.com,” vol. 13, no. October 2022, pp. 267–275, 2023.
A. Syahputra, S. Anggreni, Y. Handayani, and M. Rahmadhani, “Pengaruh Makanan Akibat Timbulnya Acne Vulgaris (Jerawat) pada Mahasiswa Mahasiswi FK UISU Tahun 2020,” J. Kedokt. STM, vol. 4, no. 2, pp. 75–82, 2021.
D. Mutiah, “Survei: 77 Persen Perempuan Berjerawat di Indonesia Jadi Korban Acne Shaming,” liputan6, 2020. https://www.liputan6.com/lifestyle/read/4337072/survei-77-persen-perempuan-berjerawat-di-indonesia-jadi-korban-acne-shaming (accessed Apr. 10, 2023).
N. Aini, I. Herdiani, and B. Brahmantia, “Hubungan Acne Vulgaris (Av) Dengan Kepercayaan Diri Pada Mahasiswa Universitas Muhammadiyah Purwokerto Angkatan 2021,” J. Kesehat. Tambusai, vol. 3, no. 3, pp. 434–441, 2022, doi: 10.31004/jkt.v3i3.6595.
A. Q. Azhari, D. Mayasari, and R. Rusli, “Formulasi Sediaan Gel Totol Jerawat Berbahan Aktif Ekstrak Kulit Buah Naga Merah (Hylocereus polyrhizus) Terhadap Bakteri Staphylococcus aureus dan Propionibacterium acnes,” Proceeding Mulawarman Pharm. Conf., vol. 14, pp. 359–365, 2021, doi: 10.25026/mpc.v14i1.603.
C. M. A. Sari, D. Purbowati, F. Fadlillah, and Fashhan, “Literature Review Keputusan Pembelian Melalui Minat Beli: Promosi Iklan Tv Dan Media Sosial,” J. Manaj. Pendidik. Dan Ilmu Sos., vol. 3, no. 1, pp. 175–190, 2022, doi: 10.38035/jmpis.v3i1.864.
A. Fazriatul and A. C. Februadi, “Menelusuri Persepsi Acne Fighter Terhadap Konsep Iklan Yang Tidak Sesuai,” IRWNS; Ind. Res. Work. Natl. Semin., pp. 13–14, 2022.
A. Halim and M. J. Tyra, “Pengaruh Online Consumer Review Dan Influencer Terhadap Keputusan Pembelian Produk Di Marketplace Shopee,” Bul. Ekon. Manajemen, Ekon. Pembangunan, Akunt., vol. 18, no. 1, p. 99, 2021, doi: 10.31315/be.v18i1.5630.
A. N. S. Rahayu, T. I. Hermanto, and I. M. Nugroho, “Sentiment Analysis Using K-Nearest Neighbor Based on Particle Swarm Optimization According To Sunscreen’S Reviews,” J. Tek. Inform., vol. 3, no. 6, pp. 1639–1646, 2022, doi: 10.20884/1.jutif.2022.3.6.425.
C. H. Yutika, A. Adiwijaya, and S. Al Faraby, “Analisis Sentimen Berbasis Aspek pada Review Female Daily Menggunakan TF-IDF dan Naïve Bayes,” J. Media Inform. Budidarma, vol. 5, no. 2, p. 422, 2021, doi: 10.30865/mib.v5i2.2845.
R. S. Amardita, A. Adiwijaya, and M. D. Purbolaksono, “Analisis Sentimen terhadap Ulasan Paris Van Java Resort Lifestyle Place di Kota Bandung Menggunakan Algoritma KNN,” JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 1, p. 62, 2022, doi: 10.30865/jurikom.v9i1.3793.
R. Ramadhan, M. Afdal, I. Permana, and M. Jazman, “Analisis Sentimen pada Ulasan Aplikasi Maxim di Google Play Store dengan K-Nearest Neighbor,” JURIKOM (Jurnal Ris. Komputer), vol. 10, no. 3, p. 715, 2023, doi: 10.30865/jurikom.v10i3.6396.
T. Setiyorini, ; Rizky, and T. Asmono, “Implementation of K-Nearest Neighbor and Gini Index Method in Classification of Student Performance,” Techno Nusa Mandiri J. Comput. Inf. Technol., vol. 16, no. 2, pp. 121–126, 2019, [Online]. Available: https://ejournal.nusamandiri.ac.id/index.php/techno/article/view/747
A. Ghiffarie, K. D. A. Salsabila, and R. P. Baistama, “Analisis Sentimen Terhadap Produk The Body Shop Tea Tree Oil,” J. Teknol. Manaj. Inform., vol. 5, no. 1, 2019.
E. Indrayuni, A. Nurhadi, and D. A. Kristiyanti, “Implementasi Algoritma Naive Bayes, Support Vector Machine, dan K-Nearest Neighbors untuk Analisa Sentimen Aplikasi Halodoc,” Fakt. Exacta, vol. 14, no. 2, p. 64, 2021, doi: 10.30998/faktorexacta.v14i2.9697.
A. D. Adhi Putra, “Analisis Sentimen pada Ulasan pengguna Aplikasi Bibit Dan Bareksa dengan Algoritma KNN,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 8, no. 2, pp. 636–646, 2021, doi: 10.35957/jatisi.v8i2.962.
J. A. Septian, T. M. Fachrudin, and A. Nugroho, “Analisis Sentimen Pengguna Twitter Terhadap Polemik Persepakbolaan Indonesia Menggunakan Pembobotan TF-IDF dan K-Nearest Neighbor,” J. Intell. Syst. Comput., vol. 1, no. 1, pp. 43–49, 2019, doi: 10.52985/insyst.v1i1.36.
A. W. Sari, T. I. Hermanto, and M. Defriani, “Sentiment Analysis Of Tourist Reviews Using K-Nearest Neighbors Algorithm And Support Vector Machine,” vol. 8, no. 3, pp. 1366–1378, 2023.
N. Legiawati, T. I. Hermanto, and Y. R. Ramadhan, “Analisis Sentimen Opini Pengguna Twitter Terhadap Perusahaan Jasa Ekspedisi Menggunakan Algoritma Naïve Bayes Berbasis PSO,” JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 4, p. 930, 2022, doi: 10.30865/jurikom.v9i4.4629.
S. Khairunnisa, A. Adiwijaya, and S. Al Faraby, “Pengaruh Text Preprocessing terhadap Analisis Sentimen Komentar Masyarakat pada Media Sosial Twitter (Studi Kasus Pandemi COVID-19),” J. Media Inform. Budidarma, vol. 5, no. 2, p. 406, 2021, doi: 10.30865/mib.v5i2.2835.
H. Rofiq, K. C. Pelangi, and Y. Lasena, “Penerapan Data Mining Untuk Menentukan Potensi Hujan Harian Dengan Menggunakan Algoritma Naive Bayes,” J. Manaj. Inform. dan Sist. Inf., vol. 3, no. 1, pp. 8–15, 2020, [Online]. Available: http://mahasiswa.dinus.ac.id/docs/skripsi/jurnal/19417.pdf
A. Damuri, U. Riyanto, H. Rusdianto, and M. Aminudin, “Implementasi Data Mining dengan Algoritma Naïve Bayes Untuk Klasifikasi Kelayakan Penerima Bantuan Sembako,” JURIKOM (Jurnal Ris. Komputer), vol. 8, no. 6, p. 219, 2021, doi: 10.30865/jurikom.v8i6.3655.
Sudianto, P. Wahyuningtias, H. W. Utami, U. A. Raihan, and H. N. Hanifah, “Comparison Of Random Forest And Support Vector Machine Methods On Twitter Sentiment Analysis ( Case Study?: Internet Selebgram Rachel Vennya Escape From Quarantine ) Perbandingan Metode Random Forest Dan Support Vector Machine Pada Analisis Sentimen Twitt,” Jutif, vol. 3, no. 1, pp. 141–145, 2022.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Analisis Sentimen Review Produk Acne Spot Treatment di Female Daily Menggunakan Algoritma K-Nearest Neighbor
ARTICLE HISTORY
Issue
Section
Copyright (c) 2023 Sanggir Dyah Fritama, Yudhi Raymond Ramadhan, Mutiara Andayani Komara

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).