Klasifikasi Sentimen Ulasan Aplikasi WhatsApp di Play Store Menggunakan Metode K-Nearest Neighbor
DOI:
https://doi.org/10.30865/klik.v4i1.1050Keywords:
WhatsApp; Google Playstore; K-Nearest Neighbor; Sentiment ClassificationAbstract
Every app has strengths and weaknesses that can influence various responses from users, including levels of satisfaction and disappointment that are often expressed through reviews on the Google Play Store. On this platform, the ratings and reviews feature allows users to give their opinions and experiences on the apps they use. One example of an application that is popular among the public is WhatsApp. The purpose of this research is to measure users' opinions and views on the WhatsApp application using the K-Nearest Neighbor algorithm. The data used in this study includes 1000 data, with 669 positive opinions and 331 negative opinions on the application. The process of dividing training data and test data was carried out through several experiments with three different ratios, namely 70:30, 80:20, and 90:10. From the results of this test, the best model was obtained in the scenario of dividing training data and test data with a ratio of 90:10 resulting in accuracy reaching 84%, precision value of 87.65%, recall of 92.21%, and f1-score of 89.87% for the positive class. While in the negative class, the precision value reached 68.42%, recall reached 56.52%, and f1-score reached 61.90% at K = 14 and Threshold = 20.
Downloads
References
M. I. Mahdi, “Pengguna Media Sosial di Indonesia Capai 191 Juta pada 2022,” Dataindonesia.id, 25 Februari 2022. https://dataindonesia.id/digital/detail/pengguna-media-sosial-di-indonesia-capai-191-juta-pada-2022 (diakses 21 Maret 2023).
M. P. Utama, “Klasifikasi Komentar Di Google Playstore Tentang Kepuasan Pengguna Terhadap Aplikasi Ojek Online Dengan Menggunakan Metode C4.5,” Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, 2021.
StatCounter, “Mobile Operating System Market Share in Indonesia,” StatCounter, Mei 2023. https://gs.statcounter.com/os-market-share/mobile/indonesia (diakses 21 Juni 2023).
Y. Asri, W. N. Suliyanti, D. Kuswardani, dan M. Fajri, “Pelabelan Otomatis Lexicon Vader dan Klasifikasi Naive Bayes dalam menganalisis sentimen data ulasan PLN Mobile,” Jurnal Pengkajian dan Penerapan Teknik Informatika, vol. 15, no. 2, hlm. 264–275, Nov 2022, doi: 10.33322/petir.v15i2.1733.
H. Setiawan, E. Utami, dan S. Sudarmawan, “Analisis Sentimen Twitter Kuliah Online Pasca Covid-19 Menggunakan Algoritma Support Vector Machine dan Naive Bayes,” Jurnal Komtika (Komputasi dan Informatika), vol. 5, no. 1, hlm. 43–51, Jul 2021, doi: 10.31603/komtika.v5i1.5189.
I. W. Suryawan Budi, N. Widya Utami, dan K. Q. Fredlina, “Analisis Sentimen Review Wisatawan Pada Objek Wisata Ubud Menggunakan Algoritma Support Vector Machine,” Jurnal Informatika Teknologi dan Sains, vol. 5, no. 1, hlm. 133–140, 2023.
Z. Ulfah Siregar, R. R. A. Siregar, dan R. Arianto, “Klasifikasi Sentiment Analysis Pada Komentar Peserta Diklat Menggunakan Metode K-Nearest Neighbor,” Jurnal Kilat, vol. 8, no. 1, hlm. 81–92, 2019.
A. Tangkelayuk dan E. Mailoa, “Klasifikasi Kualitas Air Menggunakan Metode KNN, Naïve Bayes Dan Decision Tree,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 9, no. 2, hlm. 1109–1119, 2022, doi: doi.org/10.35957/jatisi.v9i2.2048.
A. P. Wibowo, W. Darmawan, dan N. Amalia, “Komparasi Metode Naïve Bayes Dan K-Nearest Neighbor Terhadap Analisis Sentimen Pengguna Aplikasi Pedulilindungi,” IC-Tech, vol. 17, no. 1, hlm. 18–23, 2022, doi: doi.org/10.47775/ictech.v17i1.234.
I. G. Hendrayana, D. G. H. Divayana, dan M. W. A. Kesiman, “Komparasi Metode SVM, K-NN Dan NBC Pada Analisis Sentimen,” Jurnal Indonesia?: Manajemen Informatika dan Komunikasi, vol. 4, no. 1, hlm. 191–198, Jan 2023, doi: 10.35870/jimik.v4i1.157.
M. W. Pertiwi, “Analisis Sentimen Opini Publik Mengenai Sarana Dan Transportasi Mudik Tahun 2019 Pada Twitter Menggunakan Algoritma Naïve Bayes, Neural Network, KNN Dan SVM,” Inti Nusa Mandiri, vol. 14, no. 1, hlm. 27–32, 2019, [Daring]. Tersedia pada: http://www.nusamandiri.ac.id
R. I. Alhaqq, I. M. Kurniawan Putra, dan Y. Ruldeviyani, “Analisis Sentimen terhadap Penggunaan Aplikasi MySAPK BKN di Google Play Store,” Jurnal Nasional Teknik Elektro dan Teknologi Informasi, vol. 11, no. 2, hlm. 105–113, 2022.
E. Suryati, Styawati, dan A. Ari Aldino, “Analisis Sentimen Transportasi Online Menggunakan Ekstraksi Fitur Model Word2vec Text Embedding Dan Algoritma Support Vector Machine (SVM),” Jurnal Teknologi dan Sistem Informasi, vol. 4, no. 1, hlm. 96–106, 2023, doi: 10.33365/jtsi.v4i1.2445.
M. I. Putri dan I. Kharisudin, “Analisis Sentimen Pengguna Aplikasi MarketplaceTokopedia Pada Situs Google Play Menggunakan Metode Support Vector Machine(SVM), Naïve Bayes, dan Logistic Regression,” dalam Prosiding Seminar Nasional Matematika, 2022, hlm. 759–766.
M. M. Rohman, Indriati, dan S. Adinugroho, “Analisis Sentimen pada Ulasan Aplikasi Mobile JKN Menggunakan Metode Maximum Entropy dan Seleksi Fitur Gini Index Text,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 5, no. 6, hlm. 2646–2654, 2021.
H. Sakdiyah, “Analisis Sentimen Customer Review Brand Kopi Kenangan Menggunakan Metode Naive Bayes,” Universitas Islam Negeri Maulana Malik Ibrahim, Malang, 2023.
I. Febriansyah, M. Fikry, dan Yusra, “Analisis Sentiment di Twitter terhadap Anies Baswedan sebagai Bakal Calon Presiden 2024 Menggunakan Metode K-Nearest Neighbor,” G-Tech: Jurnal Teknologi Terapan, vol. 7, no. 3, hlm. 1061–1070, 2023, doi: 10.33379/gtech.v7i4.2723.
A. P. Giovani, Ardiansyah, T. Haryanti, L. Kurniawati, dan W. Gata, “Analisis Sentimen Aplikasi Ruang Guru Di Twitter Menggunakan Algoritma Klasifikasi,” Jurnal Teknoinfo, vol. 14, no. 2, hlm. 115–124, Jul 2020, doi: 10.33365/jti.v14i2.679.
V. R. Prasetyo, I. A. Ryanda, dan D. A. Prima, “Analisis Sentimen Dan Kategorisasi Review Pelanggan Pada Cafe Kopi Paste Dengan Metode Naive Bayes Dan K-Nearest Neighbor,” Jurnal Ilmiah NERO, vol. 8, no. 1, 2023.
R. S. Amardita, Adiwijaya, dan M. D. Purbolaksono, “Analisis Sentimen terhadap Ulasan Paris Van Java Resort Lifestyle Place di Kota Bandung Menggunakan Algoritma KNN,” Jurnal Riset Komputer, vol. 9, no. 1, hlm. 62–68, Feb 2022, doi: 10.30865/jurikom.v9i1.3793.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Klasifikasi Sentimen Ulasan Aplikasi WhatsApp di Play Store Menggunakan Metode K-Nearest Neighbor
ARTICLE HISTORY
Issue
Section
Copyright (c) 2023 Muhammad Riski, Muhammad Fikry, Yusra Yusra

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).