Analisis Sentimen Pembangunan Kereta Cepat Jakarta-Bandung di Media Sosial Twitter Menggunakan Metode Naive Bayes
DOI:
https://doi.org/10.30865/klik.v4i1.1033Keywords:
KCJB; Naive Bayes; Twitter; Text Data; Sentiment AnalysisAbstract
The rapid development of the world of technology and communication cannot be separated from web service providers who always provide various information. One example is text data taken from Twitter. Twitter is a social media and micro blogging service that allows its users to post realtime messages. This message is popularly known as a tweet, by using it, users will find it easy to follow trends, stories, information and news from all corners of the world. Problems regarding the construction of the Jakarta-Bandung fast train (KCJB) which required large funds, not to mention the transfer of the route from Jakarta-Surabaya to Jakarta-Bandung which resulted in a large increase in funds. So that it raises a problem such as differences of opinion and statements of approval and disapproval of the construction of the Jakarta-Bandung fast train. The method used is Naive Bayes because it has a high probability or opportunity value for classifying data, for weighting using TF-IDF calculations, and testing data using a confusion matrix. The solution to the problem is sentiment analysis, grouping and at the same time helping data from predicting the tweet data. . The purpose of this study is to analyze the sentiments of Twitter users towards the construction of the Jakarta-Bandung fast train using the Naive Bayes method by calculating the value of the KCJB tweet data which has a total of 2390 data which after going through the cleaning process becomes 2007 data. After processing with 673 negative sentiment results, 668 positive sentiment results, and 665 neutral sentiment results, 71% accuracy, 73% precision, recall
Downloads
References
R. W. Samsir, Ambiyar, Unung Verawardina, Firman Edi, “Analisis Sentimen Pembelajaran Daring Pada Twitter di Masa Pandemi COVID-19 Menggunakan Metode Naïve Bayes,” vol. 5, no. 1, pp. 157–163, 2021, doi: 10.30865/mib.v5i1.2604.
N. Hardi, Y. Alkahfi, P. Handayani, W. Gata, and M. R. Firdaus, “Analisis Sentimen Physical Distancing pada Twitter Menggunakan Text Mining dengan Algoritma Naive Bayes Classifier,” Sistemasi, vol. 10, no. 1, p. 131, 2021, doi: 10.32520/stmsi.v10i1.1118.
T. K. Salaatsa and Y. Sibaroni, “Sentiment Analysis on the Construction of the Jakarta-Bandung High-Speed Train on Twitter Social Media Using Recurrent Neural Networks Method,” vol. x, no. x, pp. 102–110, 2022.
R. Fajriati, S. Hapsoro, and T. Utomo, “Analisis Standar Perancangan Geometri Rel Kereta Cepat (Studi Kasus?: Kereta Cepat Jakarta-Bandung) Analysis of High Speed Railway Geometric Design Standard (Case Study: Jakarta-Bandung High Speed Railway),” J. Manaj. Aset Infrastruktur Fasilitas, vol. 4, no. 3, pp. 249–260, 2020.
F. Sanjaya and V. Puspitasari, “Analisis Mengenai Dampak Lingkungan Pembangunan Kereta Cepat Jakarta-Bandung Dalam Perspektif Kritis Environmentalisme,” Padjadjaran J. Int. Relations, vol. 2, no. 2, p. 170, 2020, doi: 10.24198/padjir.v2i2.26044.
R. Rosdiana, T. Eddy, S. Zawiyah, and N. Y. U. Muhammad, “Analisis Sentimen pada Twitter terhadap Pelayanan Pemerintah Kota Makassar,” Proceeding SNTEI, no. June 2020, pp. 87–93, 2019.
M. Z. Rahman, Y. A. Sari, and N. Yudistira, “Analisis Sentimen Tweet COVID-19 menggunakan Word Embedding dan Metode Long Short-Term Memory (LSTM),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 11, pp. 5120–5127, 2021, [Online]. Available: http://j-ptiik.ub.ac.id
I. Loelianto, M. S. S. Thayf, and H. Angriani, “Implementasi Teori Naive Bayes Dalam Klasifikasi Calon Mahasiswa Baru Stmik Kharisma Makassar,” SINTECH (Science Inf. Technol. J., vol. 3, no. 2, pp. 110–117, 2020, doi: 10.31598/sintechjournal.v3i2.651.
P. P. O. Mahawardana, I. A. P. F. Imawati, and I. W. Dika, “Analisis Sentimen Berdasarkan Opini dari Media Sosial Twitter terhadap ‘Figure Pemimpin’ Menggunakan Python,” J. Manaj. dan Teknol. Inf., vol. 12, no. 2, pp. 50–56, 2022, [Online]. Available: https://ojs.mahadewa.ac.id/index.php/jmti/article/view/2111
S. Nurul, J. Fitriyyah, N. Safriadi, E. Esyudha, and P. #3, “Analisis Sentimen Calon Presiden Indonesia 2019 dari Media Sosial Twitter Menggunakan Metode Naive Bayes,” (Jurnal Edukasi dan Penelit. Inform., vol. 5, no. 3, pp. 279–285, 2019, [Online]. Available: http://dx.doi.org/10.26418/jp.v5i3.34368
U. Kusnia and F. Kurniawan, “Analisis Sentimen Review Aplikasi Media Berita OnlinePada Google Playmenggunakan Metode Algoritma Support Vector Machines (SVM) Dan Naive Bayes,” Explor. IT, vol. 14, no. 36, pp. 24–28, 2022.
B. M. Pintoko and K. M. L., “Analisis Sentimen Jasa Transportasi Online pada Twitter Menggunakan Metode Naive Bayes Classifier,” e-Proceeding Eng., vol. 5, no. 3, pp. 8121–8130, 2018.
N. Legiawati, T. I. Hermanto, and Y. R. Ramadhan, “Analisis Sentimen Opini Pengguna Twitter Terhadap Perusahaan Jasa Ekspedisi Menggunakan Algoritma Naïve Bayes Berbasis PSO,” JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 4, p. 930, 2022, doi: 10.30865/jurikom.v9i4.4629.
N. S. Devi Sari Oktavia Panggabean, Efori Buulolo, “Penerapan Data Mining Untuk Memprediksi Pemesanan Bibit Pohon Dengan Regresi Linear Berganda,” vol. 7, no. 1, pp. 56–62, 2020, doi: 10.30865/jurikom.v7i1.1947.
M. Y. Aldean, P. Paradise, and N. A. Setya Nugraha, “Analisis Sentimen Masyarakat Terhadap Vaksinasi Covid-19 di Twitter Menggunakan Metode Random Forest Classifier (Studi Kasus: Vaksin Sinovac),” J. Informatics, Inf. Syst. Softw. Eng. Appl., vol. 4, no. 2, pp. 64–72, 2022, doi: 10.20895/inista.v4i2.575.
L. Ardiani, H. Sujaini, and T. Tursina, “Implementasi Sentiment Analysis Tanggapan Masyarakat Terhadap Pembangunan di Kota Pontianak,” J. Sist. dan Teknol. Inf., vol. 8, no. 2, p. 183, 2020, doi: 10.26418/justin.v8i2.36776.
A. M. F. Hulu and K. M. Lhaksmana, “Analisis Sentimen Politik pada Twitter Menggunakan Metode Support Vector Machine (Studi Kasus?: Pilpres 2019),” e-Proceeding Eng., vol. 6, no. 2, pp. 2017–2020, 2019.
A. Rizki, “Operasi ‘Tokenizing’ pada Teks Berbahasa Indonesia,” adityarizki.net, 2020. https://adityarizki.net/belajarpython-9-operasi-tokenizing-pada-teks-berbahasa-indonesia/#:~:text=Tokenizing adalah operasi memisahkan teks,tanda baca%2C dan lain sebagainya.
K. S. Nugroho, “Dasar Text Preprocessing dengan Python,” ksnugroho.medium.com, 2019. https://ksnugroho.medium.com/dasar-text-preprocessing-dengan-python-a4fa52608ffe#:~:text=Filtering adalah tahap mengambil kata,wordlist (menyimpan kata penting).
J. A. Septian, T. M. Fachrudin, and A. Nugroho, “Analisis Sentimen Pengguna Twitter Terhadap Polemik Persepakbolaan Indonesia Menggunakan Pembobotan TF-IDF dan K-Nearest Neighbor,” J. Intell. Syst. Comput., vol. 1, no. 1, pp. 43–49, 2019, doi: 10.52985/insyst.v1i1.36.
K. Yan, D. Arisandi, and T. Tony, “Analisis Sentimen Komentar Netizen Twitter Terhadap Kesehatan Mental Masyarakat Indonesia,” J. Ilmu Komput. dan Sist. Inf., vol. 10, no. 1, 2022, doi: 10.24912/jiksi.v10i1.17865.
Bila bermanfaat silahkan share artikel ini
Berikan Komentar Anda terhadap artikel Analisis Sentimen Pembangunan Kereta Cepat Jakarta-Bandung di Media Sosial Twitter Menggunakan Metode Naive Bayes
ARTICLE HISTORY
Issue
Section
Copyright (c) 2023 Johanes Florensius Sianipar, Yudhi Raymond Ramadhan, Irsan Jaelani

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).